Optimization of the metal/silicon ratio on nickel assisted crystallization of amorphous silicon

2005 ◽  
Vol 869 ◽  
Author(s):  
L. Pereira ◽  
M. Beckers ◽  
R.M.S. Martins ◽  
E. Fortunato ◽  
R. Martins

AbstractThe aim of this work is to optimize the metal/silicon ratio on nickel metal induced crystallization of silicon. For this purpose amorphous silicon layers with 80, 125 and 220 nm thick were used on the top of which 0.5 nm of Ni was deposited and annealed during the required time to full crystallize the a-Si. The data show that the 80 nm a-Si layer reaches a crystalline fraction of 95.7% (as detected by spectroscopic ellipsometry) after annealed for only 2 hours. No significant structural improvement is detected by ellipsometry neither by XRD when annealing the films for longer times. However, on 125 nm thick samples, after annealing for 2 hours the crystalline fraction is only 59.7%, reaching a similar value to the one with 80 nm only after 5 hours, with a crystalline fraction of 92.2%. Here again no significant improvements were achieved by using longer annealing times. Finally, the 220 nm thick a-Si sample is completely crystallized only after 10 hours annealing. These data clear suggest that the crystallization of thicker a-Si layers requires thicker Ni films to be effective for short annealing times. A direct dependence of the crystallization time on the metal/silicon ratio was observed and estimated.

2013 ◽  
Vol 652-654 ◽  
pp. 1765-1768
Author(s):  
Xiao Lei Qu ◽  
Jing Jin ◽  
Wei Min Shi ◽  
Yu Feng Qiu ◽  
Lu Huang ◽  
...  

A viscous Nickel (Ni) solution was applied on amorphous Si films by spin coating and its effect on the crystallization of amorphous Si films was investigated with a two-step annealing process. The experimental results show that with the help of the two-step annealing, the crystallization of the film can take place at 500oC. At the same time, the crystalline fraction gets up to 79.4% after annealing at a high temperature of 520oC and the grain size of the polycrystalline Si films is approximately 200 nm.


1998 ◽  
Vol 507 ◽  
Author(s):  
H. Fujiwara ◽  
Joohyun Koh ◽  
Yeeheng Lee ◽  
C. R. Wronski ◽  
R. W. Collins

ABSTRACTWe have introduced real time spectroscopic ellipsometry (RTSE) for characterization of the solid phase crystallization (SPC) of intrinsic and n-type amorphous silicon (a-Si:H) thin films. RTSE has several advantages in the study and design of SPC processes for thin film transistor and solar cell fabrication. These include the capability of obtaining (i) calibration data that yield the near surface temperature of the film during processing, (ii) the volume fraction of the crystalline Si component of the film continuously versus time during SPC, and (iii) a measurement of the grain size and quality of the final polycrystalline Si film. For the thin layers studied here (∼150-1000 Å), we demonstrate excellent fitting of the SPC dynamics to the Avrami-Johnson-Mehl theory for random nucleation and two-dimensional crystallite growth. For a-Si:H n-layers, the crystallization time over the range from 565 to 645°C appears to be weakly activated with an energy of 0.6 eV.


2006 ◽  
Vol 910 ◽  
Author(s):  
Husam Abu-Safe ◽  
Abul-Khair M. Sajjadul-Islam ◽  
Hameed A. Naseem ◽  
William D. Brown

AbstractThe effect of capping layer on metal induced crystallization of amorphous silicon was studied. Three sets of samples were prepared in this study. All samples had the basic layer structure of amorphous silicon layer deposited on a glass substrate. This was followed by a thin aluminum layer deposition. The second and third sets, however, had a third layer of amorphous silicon with thicknesses of 20 and 50 nm, respectively. These layers were deposited on top of the aluminum. The samples were annealed at 400°C for 15, 30 and 45 minutes. The crystallization fraction in the resultant films was analyzed using X-Ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic force microscopy. It was observed that the capping layer reduces nodule formation improving the smoothness of the crystallized polysilicon films.


1987 ◽  
Vol 5 (4) ◽  
pp. 1447-1450 ◽  
Author(s):  
A. E. Robertson ◽  
L. G. Hultman ◽  
H. T. G. Hentzell ◽  
S.‐E. Hörnström ◽  
G. Shaofang ◽  
...  

2001 ◽  
Vol 664 ◽  
Author(s):  
Marek A. T. Izmajlowicz ◽  
Neil A. Morrison ◽  
Andrew J. Flewitt ◽  
William I. Milne

ABSTRACTFor application to active matrix liquid crystal displays (AMLCDs), a low temperature (< 600 °C) process for the production of polycrystalline silicon is required to permit the use of inexpensive glass substrates. This would allow the integration of drive electronics onto the display panel. Current low temperature processes include excimer laser annealing, which requires expensive equipment, and solid phase crystallization, which requires high temperatures. It is known that by adding small amounts of metals such as nickel to the amorphous silicon the solid phase crystallization temperature can be significantly reduced. The rate of this solid phase metal induced crystallization is increased in the presence of an electric field. Previous work on field aided crystallization has reported crystal growth that either proceeds towards the positive terminal or is independent of the direction of the electric field. In this work, extensive investigation has consistently revealed directional crystallization, from the positive to the negative terminal, of amorphous silicon thin films during heat treatment in the presence of an electric field. This is the first time that this phenomenon has been reported. Models have been proposed for metal induced crystallization with and without an applied electric field in which a reaction between Ni and Si to produce NiSi is the rate-limiting step. The crystallization rate is increased in the presence of an electric field through the drift of positive Ni ions.


Sign in / Sign up

Export Citation Format

Share Document