Strain Relaxation in Si1-xGex Thin Films on Si (100) Substrates: Modeling and Comparisons with Experiments

2005 ◽  
Vol 875 ◽  
Author(s):  
Kedarnath Kolluri ◽  
Luis A. Zepeda-Ruiz ◽  
Cheruvu S. Murthy ◽  
Dimitrios Maroudas

AbstractStrained semiconductor thin films grown epitaxially on semiconductor substrates of different composition, such as Si1-xGex/Si, are becoming increasingly important in modern microelectronic technologies. In this paper, we report a hierarchical computational approach for analysis of dislocation formation, glide motion, multiplication, and annihilation in Si1-xGex epitaxial thin films on Si substrates. Specifically, a condition is developed for determining the critical film thickness with respect to misfit dislocation generation as a function of overall film composition, film compositional grading, and (compliant) substrate thickness. In addition, the kinetics of strain relaxation in the epitaxial film during growth or thermal annealing (including post-implantation annealing) is analyzed using a properly parameterized dislocation mean-field theoretical model, which describes plastic deformation dynamics due to threading dislocation propagation. The theoretical results for Si1-xGex epitaxial thin films grown on Si (100) substrates are compared with experimental measurements and are used to discuss film growth and thermal processing protocols toward optimizing the mechanical response of the epitaxial film.

2001 ◽  
Vol 673 ◽  
Author(s):  
A. Maxwell Andrews ◽  
J.S. Speck ◽  
A.E. Romanov ◽  
M. Bobeth ◽  
W. Pompe

ABSTRACTAn approach is developed for understanding the cross-hatch morphology in lattice mismatched heteroepitaxial film growth. It is demonstrated that both strain relaxation associated with misfit dislocation formation and subsequent step elimination (e.g. by step-flow growth) are responsible for the appearance of nanoscopic surface height undulations (0.1-10 nm) on a mesoscopic (∼100 nm) lateral scale. The results of Monte Carlo simulations for dislocation- assisted strain relaxation and subsequent film growth predict the development of cross-hatch patterns with a characteristic surface undulation magnitude ∼50 Å in an approximately 70% strain relaxed In0.25Ga0.75As layers. The model is supported by atomic force microscopy (AFM) observations of cross-hatch morphology in the same composition samples grown well beyond the critical thickness for misfit dislocation generation.


2001 ◽  
Vol 16 (6) ◽  
pp. 1769-1775 ◽  
Author(s):  
J. McChesney ◽  
M. Hetzer ◽  
H. Shi ◽  
T. Charlton ◽  
D. Lederman

The FexZn1−xF2 alloy has been shown to be a model system for studying the magnetic phase diagram of dilute magnets. Whereas the growth of bulk single crystals with fixed Zn concentrations is difficult, the thin film growth is comparatively simpler and more flexible. To gain an understanding of the growth of FexZn1−xF2 films, a method was developed to grow smooth films at fixed concentrations. This was done by depositing a MgF2 buffer layer on MgF2(001) substrates and then depositing FeF2 and ZnF2 [001]-orientated epitaxial thin films at different temperatures. Surprisingly, the lattice spacing depends strongly on the growth temperature, for 44-nm-thick FeF2 films and 77-nm-thick ZnF2 films. This indicates a significant amount of stress, despite the close lattice match between the films and the MgF2 substrate. Thick alloy samples (approximately 500 nm thick) were grown by co-evaporation from the FeF2 and ZnF2 sources at the ideal temperature determined from the growth study, and their concentration was accurately determined using x-ray diffraction.


2010 ◽  
Vol 256 (10) ◽  
pp. 3299-3302 ◽  
Author(s):  
Bo-Ching He ◽  
Hua-Chiang Wen ◽  
Tun-Yuan Chinag ◽  
Zue-Chin Chang ◽  
Derming Lian ◽  
...  

2010 ◽  
Vol 56 ◽  
pp. 317-340 ◽  
Author(s):  
Bruce A. Joyce ◽  
Michael J. Stowell

Donald William (Don) Pashley was one of the most innovative materials scientists of his generation. He was distinguished for his electron diffraction and transmission electron microscope studies of epitaxial thin films, especially for in situ investigations, work that contributed enormously to our understanding of film growth processes. He pioneered the use of moiré patterns to reveal dislocations and other defects. He also made important contributions to long-range disorder effects on semiconductor surfaces and to the structure of low-dimensional semiconductor systems.


1994 ◽  
Vol 341 ◽  
Author(s):  
Man Fai Ng ◽  
Michael J. Cima

AbstractBoth lanthanum aluminate (LaAIO 3) and spinel (MgAl2O 4) epitaxial thin films have been deposited on either planar and stepped (100) SrTiO3 single crystal substrates by pyrolysis of mixed nitrate precursors. The precursors pyrolyze initially into amorphous films. Nucleation of lanthanum aluminate and spinel occurs at the filnVsubstrate interface at higher temperature. Crystallization of LaAlO3 on SrTiO3 substrates occurs at approximately 650°C, whereas nucleation occurs at approximately 800'C without lattice-matched substrates. Similarly, latticematched substrates reduce the crystallization temperature of spinel to below 700°C. The epitaxial film grows at the expense of the amorphous film after the initial nucleation at the interface. The rapid growth and volume change due to the crystallization leave behind an epitaxial film with nanoporosity of 15 to 30 nm. Nevertheless, the surfaces of these films have roughness of only 6–9 Å. Ba2Ycu3O7-x films derived from metalorganic deposition of metal trifluoroacetate precursors was deposited on these epitaxial LaAlO3 films on both planar and stepped SrTiO3 substrates. The resultant YBCO films on LaAlO3 film on planar SrTiO3 substrate have critical current densities of > 2 × 106 A/cm2 at 77K and zero field.


1991 ◽  
Vol 20 (7) ◽  
pp. 833-837 ◽  
Author(s):  
C. A. Volkert ◽  
E. A. Fitzgerald ◽  
R. Hull ◽  
Y. H. Xie ◽  
Y. J. Mii

2012 ◽  
Vol 338 (1) ◽  
pp. 280-282 ◽  
Author(s):  
Y. Yu ◽  
X. Zhang ◽  
J.J. Yang ◽  
J.W. Wang ◽  
Y.G. Zhao

1998 ◽  
Vol 319 (1-2) ◽  
pp. 211-214 ◽  
Author(s):  
J.-L Maurice ◽  
O Durand ◽  
M Drouet ◽  
J.-P Contour

2005 ◽  
Vol 97 (10) ◽  
pp. 103530 ◽  
Author(s):  
W. K. Simon ◽  
E. K. Akdogan ◽  
A. Safari

Sign in / Sign up

Export Citation Format

Share Document