Crystallization of Epitaxial Lanthanum Aluminate and Spinel Thin Films Derived from Nitrate Precursors
AbstractBoth lanthanum aluminate (LaAIO 3) and spinel (MgAl2O 4) epitaxial thin films have been deposited on either planar and stepped (100) SrTiO3 single crystal substrates by pyrolysis of mixed nitrate precursors. The precursors pyrolyze initially into amorphous films. Nucleation of lanthanum aluminate and spinel occurs at the filnVsubstrate interface at higher temperature. Crystallization of LaAlO3 on SrTiO3 substrates occurs at approximately 650°C, whereas nucleation occurs at approximately 800'C without lattice-matched substrates. Similarly, latticematched substrates reduce the crystallization temperature of spinel to below 700°C. The epitaxial film grows at the expense of the amorphous film after the initial nucleation at the interface. The rapid growth and volume change due to the crystallization leave behind an epitaxial film with nanoporosity of 15 to 30 nm. Nevertheless, the surfaces of these films have roughness of only 6–9 Å. Ba2Ycu3O7-x films derived from metalorganic deposition of metal trifluoroacetate precursors was deposited on these epitaxial LaAlO3 films on both planar and stepped SrTiO3 substrates. The resultant YBCO films on LaAlO3 film on planar SrTiO3 substrate have critical current densities of > 2 × 106 A/cm2 at 77K and zero field.