Simple One-Step Synthesis of Uniform Disperse Copper Nanoparticles

2005 ◽  
Vol 879 ◽  
Author(s):  
Chunwei Wu ◽  
Brian P. Mosher ◽  
Taofang Zeng

AbstractIn this paper, we describe a simple and rapid solution-phase chemical reduction method with no inert gas protection, for preparing stable copper nanoparticle colloid with average particle size of 3.4 nm and narrow size distribution. In our synthesis route, ascorbic acid, natural vitamin C (VC), serves as both a reducing agent and an antioxidant to reduce copper salt precursor and effectively prevent the general oxidation process occurring to the newborn nanoparticles. XRD and UV/vis confirm the formation of pure face-centered cubic (fcc) copper nanoparticles and the excellent antioxidant ability of ascorbic acid.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Aminu Musa ◽  
Mansor B. Ahmad ◽  
Mohd Zobir Hussein ◽  
Saiman Mohd Izham ◽  
Kamyar Shameli ◽  
...  

A chemical reduction method was employed for the synthesis of copper nanoparticles stabilized by nanocrystalline cellulose (NCC) using different concentrations of copper salt in aqueous solution under atmospheric air. CuSO4·5H2O salt and hydrazine were used as metal ion precursor and reducing agent, respectively. Ascorbic acid and aqueous NaOH were also used as an antioxidant and a pH moderator, respectively. The number of CuNPs increased with increasing concentration of the precursor salt. The formation of copper nanoparticles stabilized by NCC (CuNPs@NCC) was investigated by UV-visible spectroscopy (UV-vis), where the surface absorption maximum was observed at 590 nm. X-ray diffraction (XRD) analysis showed that the CuNPs@NCC are of a face-centered cubic structure. Moreover, the morphology of the CuNPs@NCC was investigated using transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM), which showed well-dispersed CuNPs with an average particle size less than 4 nm and the shape of CuNPs was found to be spherical. Energy dispersive X-ray spectroscope (EDS) also confirmed the presence of CuNPs on the NCC. The results demonstrate that the stability of CuNPs decreases with an increasing concentration of the copper ions.


2013 ◽  
Vol 860-863 ◽  
pp. 835-838
Author(s):  
Zhong Xu Dai ◽  
Dan Ni Tian ◽  
Xin Zhang ◽  
Si Lin Gong ◽  
Chang Ying Yang

To investigate the influence of ethanol catalyzed oxidation on activity of Pd/C with different ratio of Pd and C. Pd/C catalyst samples with Pd loads of 20, 30, 40 and 50 wt% were obtained by chemical reduction reaction of PdCl2 and NaBH4. The samples morphology and structure were characterized by XRD and SEM. The electrocatalytic oxidation activities of ethanol were examined by cyclic voltammetry in alkaline media. The results show that a face centered cubic (FCC) Pd phase can be identified in the sample powders. The average particle size of the Pd/C powder is about 10 nm. The performance of ethanol oxidation on 40 % Pd/C electro-catalyst is better than that of the other Pd/C samples.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000862-000889
Author(s):  
Hironori Uno ◽  
Masayuki Ishikawa ◽  
Akihiro Masuda ◽  
Hiroki Muraoka ◽  
Kanji Kuba

The work to be detailed in this paper is our development of 96.5mass%Sn-3.0mass%Ag-0.5mass%Cu fine solder particles with an average particle size of under 3um (D50), using a chemical reduction method. An evaluation was conducted on the properties of the particles. The average size of particles appeared to be under 3um with a higher yield compared to particles using the conventional gas atomization method. The melting temperature of fine solder particles using this method was its eutectic temperature, which is same as using the gas–atomized particles. 120um pitch solder bumps from the solder paste using the above mentioned fine solder particles were created on the substrate. As a result of property evaluation, it was turned out that the solder paste created a superior printing shape and coplanarity compared to the conventional paste with gas-atomized particles. In order to investigate the superior printing property generated by the paste with fine solder particles, the rheology of the paste was evaluated.It was verified that the anisotropic shape of particles has contributed to prevent the printed paste from slumping, which has resulted in the improvement of printed shape. It also shows that the filling characteristic of the paste was improved by the smaller particles and the better coplanarity was observed. The importance of finer solder particles for finer pitch assembly will be presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Malathi Sampath ◽  
Ramya Vijayan ◽  
Ezhilarasu Tamilarasu ◽  
Abiraman Tamilselvan ◽  
Balasubramanian Sengottuvelan

Novel jasmine bud-shaped copper nanoparticles were synthesized by a green chemical reduction method using polyvinylpyrrolidone (PVP) as a capping agent, L-ascorbic acid (AA) as a reducing agent as well as antioxidant agent, isonicotinic acid hydrazide (INH) as a reducing agent, and water as a solvent at 60–70°C (pH-7) in the presence of air. The UV-Vis absorption maximum obtained is 573 nm. The crystal lattice (fcc) structure of Cu Nps was confirmed by X-ray diffraction (XRD). The novel jasmine bud shape was visualized in a transmission electron microscope (TEM). The height of single copper nanobud was 6.41 nm as measured by atomic force microscope (AFM). The average particle size 6.95 nm is obtained by XRD results. Antibacterial activity of the Cu nanobuds was evaluated by testing against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.


2007 ◽  
Vol 561-565 ◽  
pp. 1425-1428 ◽  
Author(s):  
W.M. Daoush

Nano sized Co-20wt%Ni composite powder was synthesized by electroless chemical reduction method using metallic salt precursors and hypophosphite as a reducing agent in alkaline tartarate bath as a complexing agent. The synthesized powder provide better sinterability, mechanical, electrical and magnetic properties with homogeneous microstructure. The nano-sized powder could be obtained, which have the average particle size of 40 nm, with a saturation magnetization (Bs ) of 97.95 which was increased by heat treatments of powder in hydrogen to 127 emu/g due to the exclusion of the precipitated phosphrous in the composite powder. The powder underwent cold compaction at 600 Mpa and sintering at 1050 oC for 30 min. The saturation induction for the sintered material of 149.3 emu/g higher than the synthesized powder and has electrical resistivity value of 7.6 μcm.


2007 ◽  
Vol 7 (11) ◽  
pp. 3917-3919 ◽  
Author(s):  
Sung Hyun Park ◽  
Dong Seok Seo ◽  
Jong Kook Lee

Recently, PbO containing glass systems in commercial silver paste have been used due to their low glass transition temperature, good thermal and electrical properties. However, PbO is a hazardous material to both health and the environment. In this study, Pb-free silver paste was prepared by mixing commercial silver powder and silver nanoparticles. The commercial powder has an average particle size of 1.6 μm. The silver nanoparticles with particles size of 20–50 nm were synthesized by a chemical reduction method using surfactant. Pb-free frit was added into the mixed silver powder as the amounts of 3, 6 and 9 wt%. Using the obtained paste, thick films were fabricated by a screen printing on alumina substrate and the films were fired at temperature from 400 to 550 °C. The films had thickness of 6–11 μm and sheet resistivity of about 4–11 μΩ cm.


2021 ◽  
Vol 1 (1) ◽  
pp. 12-21
Author(s):  
Tan Wei Kang ◽  
Siti Husnaa Mohd Taib ◽  
Pooria Moozarm Nia ◽  
Mikio Miyake ◽  
Kamyar Shameli

In this research, Sn/Ag nanoparticle composite was produced by using chemical reduction method with the aids of sodium borohydride as reducing agent and sodium succinate as protective agent. The XRD, EDX, and TEM analyses showed that the Sn/Ag nanoparticle composite was formed with an average particle size of 4.37 + 0.44 nm. For the application, LSV analysis was done on Sn nanoparticle and Sn/Ag nanoparticle composite samples, and the analysis showed current produced from Sn/Ag nanoparticle composite (4.10 × 10-6 A) is higher than Sn nanoparticle (3.47 × 10-6 A) at the potential of -0.83V.


2021 ◽  
Author(s):  
Nesrine Ben Saber

Abstract In this work, ternary Ag@TiO2/α-Fe2O3 nanocomposite were synthesized via solvothermal chemical reduction method using N,N-dimethylformamide (DMF) as solvent and reducing agent. The chemical procedure involves the use of only metals precursors without the need to use any other surfactants or capping agents. Physicochemical properties of the designed photocatalyst are found by means of various modern techniques. XRD data confirmed the high crystallinity of the obtained ternary nanocomposite. On the other hand, using TEM and HRTEM instruments, the shape and morphology of the Ag@TiO2/α-Fe2O3 nanocomposite were found to be spherical with an average particle size of 150 nm. The UV-Vis measurement shows that Ag@TiO2/α-Fe2O3 as photocatalyst exhibited good photo response in the visible region. The effect of preparation method and the performance of the designed photocatalyst were evaluated by photodegradation measurements of MB under visible light irradiation. We observed that the combination of metallic silver nanoparticles (AgNPs) and hematite iron oxide (α-Fe2O3) with titanium dioxide (TiO2) enhance the photocatalytic activity of the ternary Ag@TiO2/α-Fe2O3 photocatalyst compared to bare TiO2 suggesting its potential for many purification applications.


Author(s):  
SNEHA THAKUR ◽  
KRISHNA MOHAN G

Objective: The main objective of the research work is to evaluate the antityrosinase potential of onion DNA silver nanoparticles (AgNPs). Methods: The onions were procured from the local market and DNA was extracted from onions using detergent and methylated spirit. The isolated DNA was selected for synthesis of AgNPs which acts as capping and reducing agent. About 10 ml of the DNA extract was added to 90 ml of 0.1 N silver nitrate solution. After 24 h incubation, the solution turned dark brown, which indicates the formation of AgNPs. The synthesized DNA AgNPs were characterized by ultraviolet-visible, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies. Results: The results revealed that the particles were uniform in shape with face-centered cubic structure. The particles are 153±20.4 nm in size and were no signs of agglomeration measured by DLS studies. The FTIR spectroscopy revealed B form of DNA along with strong N-H stretching, C=N stretching, and also asymmetric vibrations of phosphate groups characteristic for DNA molecule. The XRD studies revealed the face-centered cubic structure. SEM studies revealed the spherical structure with average particle size of 150±0.1 nm for single DNA nanoparticles. The onion DNA AgNPs were further investigated for its antityrosinase activity against the standard kojic acid and were to have anticancer potential nearer to the standard. Conclusion: From the results, it is evident that the synthesized onion DNA AgNPs have antityrosinase potential and can be further investigated for in vivo anticancer potential in future.


Sign in / Sign up

Export Citation Format

Share Document