CdTe Films Grown on InSb Substrates by Organometallic Epitaxy

1986 ◽  
Vol 90 ◽  
Author(s):  
I. B. Bhat ◽  
N. R. Taskar ◽  
J. Ayers ◽  
K. Patel ◽  
S. K. Ghandhi

ABSTRACTCadmium telluride layers were grown on InSb substrates by organometallic vapor phase epitaxy and examined using secondary ion mass spectrometry (SIMS), photoluminescence (Pb) and double crystal x-ray diffraction (DCD). The substrate temperature and the nature of the surface prior to growth are shown to be the most important parameters which influence the quality of CdTe layers. Growth on diethyltelluride (DETe) stabilized InSb substrates resulted in CdTe growth with a misorientation of about 4 minutes of arc with respect to the substrates. On the other hand, the grown layers followed the orientation of the substrates when a dimethylcadmium (DMCd) stabilized InSb was used. Growth at 350°C resulted in the smallest x-ray rocking curve (DCRC) full width at half maximum (FWHM) of about 20 arc seconds.

1987 ◽  
Vol 91 ◽  
Author(s):  
J.W. Lee ◽  
D.K. Bowen ◽  
J.P. Salerno

ABSTRACTIn an effort to evaluate the near surface crystal quality of GaAs on Si wafers, {224} plane diffraction were investigated using a conventional double crystal x-ray diffractometer without any high intensity radiation source. The x-ray incident angle to wafer surface varied from 3.6 to 9.6 degrees for different {224} planes due to the substrate tilt angle of 3 degrees. The GaAs to Si rocking curve intensity ratio increased significantly as the incident angle decreased. For the diffraction with 3.6 degree incident angle, only the GaAs peak was detected from the 3.5 um thick GaAs on Si wafer and the GaAs peak became narrower. These indicates that this conventional x-ray diffraction technique is applicable for the near surface quality evaluation of GaAs on Si wafers.


1988 ◽  
Vol 116 ◽  
Author(s):  
K. Uchida ◽  
Y. Kohama ◽  
M. Tajima ◽  
T. Soga ◽  
T. Jimbo ◽  
...  

AbstractGaP crystals are grown on Si substrates by MOCVD. Double crystal X-ray diffraction indicates that the crystal quality of GaP layers greatly improves when AsH3 is supplied before growth. The FWHM of (400) diffraction peak of the GaP layer decreases as the thickness increases and the best FWHM of 112.5 arcs is obtained at a thickness of 5 μm. The GaP/Si interface is characterized using secondary ion mass spectroscopy (SIMS) to demonstrate the effect of AsH3.


2009 ◽  
Vol 289-292 ◽  
pp. 541-550 ◽  
Author(s):  
Jerzy Jedlinski ◽  
Zbigniew Żurek ◽  
Martah Homa ◽  
G. Smoła ◽  
J. Camra

The oxidation mechanism of FeCrAl (+RE), RE: reactive elements: Y and Hf) thin foils was studied at temperatures ranging from 1093 K to 1173 K in SO2+1%O2 atmosphere. Materials were subjected to isothermal and thermal cycling exposures as well as to the so-called two-stage-oxidation. In the latter, an oxygen isotope 18O2 was used as a tracer. Starting materials and scales were characterized using Grazing Angle X-Ray Diffraction (GA-XRD), EDX, SEM, XPS and High Spatial Resolution Secondary Ion Mass Spectrometry (HSR-SIMS). The obtained results showed within the studied range of exposure conditions the scales on all the studied alloys grow via outward mechanism typical for transient oxides and not for the -Al2O3 which is consistent with phase composition results and scale morphology and/or microstructure. It was also found that ‘as received’ foils are not bare metals but complex oxide-on-metal systems resulting from their manufacturing procedure. The obtained results are discussed in terms of the diffusion-related transport properties of the scale and of the scale phase composition.


1998 ◽  
Vol 537 ◽  
Author(s):  
M.D. McCluskey ◽  
L.T. Romano ◽  
B.S. Krusor ◽  
D. Hofstetter ◽  
D.P. Bour ◽  
...  

AbstractInterdiffusion of In and Ga is observed in InGaN multiple-quantum-well superlattices for annealing temperatures of 1250 to 1400°C. Hydrostatic pressures of up to 15 kbar were applied during the annealing treatments to prevent decomposition of the InGaN and GaN. In as-grown material, x-ray diffraction spectra show InGaN superlattice peaks up to the fourth order. After annealing at 1400°C for 15 min, only the zero-order InGaN peak is observed, a result of compositional disordering of the superlattice. Composition profiles from secondary ion mass spectrometry indicate significant diffusion of Mg from the p-type GaN layer into the quantum well region. This Mg diffusion may lead to an enhancement of superlattice disordering. For annealing temperatures between 1250 and 1300°C, a blue shift of the InGaN spontaneous emission peak is observed, consistent with interdiffusion of In and Ga in the quantum-well region.


1999 ◽  
Vol 595 ◽  
Author(s):  
W.L. Sarney ◽  
L. Salamanca-Riba ◽  
V. Ramachandran ◽  
R.M Feenstra ◽  
D.W. Greve

AbstractGaN films grown on SiC (0001) by MBE at various substrate temperatures (600° - 750° C) were characterized by RHEED, STM, x-ray diffraction, AFM and TEM. This work focuses on the TEM analysis of the films' features, such as stacking faults and dislocations, which are related to the substrate temperature. There are several basal plane stacking faults in the form of cubic inclusions for samples grown at low temperatures compared to those grown at high temperatures. The dislocation density is greatest for the film grown at 600°C, and it steadily decreases with increasing growth temperatures. Despite the presence of various defects, x-ray analysis shows that the GaN films are of high quality. The double crystal rocking curve full width at half maximum (FWHM) for the GaN (0002) peak is less than 2 arc-minutes for all of the films we measured and it decreases with increasing growth temperature.


1990 ◽  
Vol 204 ◽  
Author(s):  
S.D. Tyagi ◽  
H. Ehsani ◽  
S.K. Ghandhi

ABSTRACTDoping of indium phosphide, grown by organometallic vapor phase epitaxy (OMVPE), has been carried out using hydrogen sulfide. For low partial pressures of H2S, the carrier concentration in the epitaxial layers is found to increase linearly. However, for higher partial pressures a region of superlinear doping is seen. For still higher partial pressures, a rapid decrease in carrier concentration is seen. In the linear region, the doping has a weak dependence on phosphine pressure, however, peak carrier concentration is higher for lower phosphine pressures.The layers were studied using Hall Effect and Double Crystal X-Ray Diffraction, in order to elucidate the nature of impurities and compensating centers introduced. A model which explains the above characteristics is proposed for S incorporation in MOVPE grown InP.


1995 ◽  
Vol 399 ◽  
Author(s):  
P. Fons ◽  
S. Niki ◽  
A. Yamada ◽  
A. Okada ◽  
D.J. Tweet

ABSTRACTA series of CuInSe2 thin films of varying thicknesses were grown on both GaAs(001) substrates and nominally lattice-matched In0.29Ga0.71As (001) linearly graded buffers by MBE at 450°C. Transmission electron microscopy and high resolution x-ray diffraction measurements revealed the presence of a second phase with chalcopyrite symmetry strained to the CuInSe2 thin film in-plane lattice constant for CuInSe2 films grown on GaAs substrates. Further examination confirmed that the second phase possessed chalcopyrite symmetry. No second phase was observed in films grown on nearly lattice-matched In0.29Ga0.71As (001) linearly graded buffers. Secondary ion mass spectrometry confirmed the presence of interdiffusion from of Ga from the substrate into the CuInSe2layer. It is speculated that this diffusion is related to the state of stress due to heteroepitaxial misfit.


1990 ◽  
Vol 216 ◽  
Author(s):  
W. S. Hobson ◽  
A. Zussman ◽  
B. F. Levine ◽  
S. J. Pearton ◽  
V. Swaminathan ◽  
...  

ABSTRACTWe have grown, fabricated, and measured GaAs quantum well infrared photodetectors (QWIPs) using organometallic vapor phase epitaxy (OMVPE). The epitaxial layers were characterized by electrochemical capacitance-voltage profiling, double-crystal X-ray diffraction, cathodoluminescence, and infrared absorption. Dark current, responsivity spectra, and detectivity were measured for the QWIP devices. The performance of these QWIPs was comparable to detectors grown using MBE. This is of importance since OMVPE has advantages for wafer throughout and cost.


Sign in / Sign up

Export Citation Format

Share Document