An Electrical Characterization of Sol Films Using Devices Formed by Oxygen Implant and Rapid Thermal Processing

1987 ◽  
Vol 92 ◽  
Author(s):  
Jim D. Whitfield ◽  
Marie E. Burnham ◽  
Charles J. Varker ◽  
Syd.R. Wilson

The advantages of Silicon-on-Insulator (SO) devices over bulk Silicon devices are well known (speed, radiation hardened, packing density, latch up free CMOS,). In recent years, much effort has been made to form a thin, buried insulating layer just below the active device region. Several approaches are being developed to fabricate such a buried insulating layer. One viable approach is by high dose, high energy oxygen implantation directly into the silicon wafer surface (1-3). With proper implant and annealing conditions, a thin stoichiometric buried oxide with a good crystalline quality silicon overlayer can be formed on which an epitaxial layer can be grown and functional devices and circuits built. As SO1 circuits become market viable, mass production tools and techniques are being developed and evaluated. Of particular interest here is the evaluation of high current oxygen implantation with rapid thermal processing on the electrical characteristics of the oxide-silicon interfaces, the silicon overlayer and the thermally grown oxide on the top surface using measurements on gated diodes and guarded capacitors.

1995 ◽  
Vol 387 ◽  
Author(s):  
Peter Y. Wong ◽  
Ioannis N. Miaoulis ◽  
Cynthia G. Madras

AbstractTemperature measurements and processing uniformity continue to be major issues in Rapid Thermal Processing. Spatial and temporal variations in thermal radiative properties of the wafer surface are sources of non-uniformities and dynamic variations. These effects are due to changes in spectral distribution (wafer or heat source), oxidation, epitaxy, silicidation, and other microstructural transformations. Additionally, other variations are induced by the underlying (before processing) and developing (during processing) patterns on the wafer. Numerical simulations of Co silicidation that account for these factors are conducted to determine the radiative properties, heat transfer dynamics, and resultant processing uniformity.


1991 ◽  
Vol 224 ◽  
Author(s):  
C. Schietinger ◽  
B. Adams ◽  
C. Yarling

AbstractA novel wafer temperature and emissivity measurement technique for rapid thermal processing (RTP) is presented. The ‘Ripple Technique’ takes advantage of heating lamp AC ripple as the signature of the reflected component of the radiation from the wafer surface. This application of Optical Fiber Thermometry (OFT) allows high speed measurement of wafer surface temperatures and emissivities. This ‘Ripple Technique’ is discussed in theoretical and practical terms with wafer data presented. Results of both temperature and emissivity measurements are presented for RTP conditions with bare silicon wafers and filmed wafers.


1984 ◽  
Vol 33 ◽  
Author(s):  
P. L. F. Hemment

ABSTRACTSilicon on insulator structures consisting of a buried dielectric, formed by the implantation of high doses of oxygen ions, have been shown to be suitable substrates for LSI circuits. The substrates are compatible with present silicon processing technologies and are confidently expected to be suitable for VLSI circuits. In this paper the microstructure and physical properties of this SOI material will be described and the dependence of these characteristics upon the implantation conditions and subsequent thermal processing will be discussed. With this information, it is then possible to outline the specification for a high current oxygen implanter.


1987 ◽  
Vol 62 (8) ◽  
pp. 3458-3461 ◽  
Author(s):  
F. Ferrieu ◽  
D. P. Vu ◽  
C. D’Anterroches ◽  
J. C. Oberlin ◽  
S. Maillet ◽  
...  

1995 ◽  
Vol 142 (4) ◽  
pp. 1248-1260 ◽  
Author(s):  
J. Stoemenos ◽  
A. Garcia ◽  
B. Aspar ◽  
J. Margail

Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 79-86
Author(s):  
J. A. Solovjov ◽  
V. A. Pilipenko ◽  
V. P. Yakovlev

The present work is devoted to determination of the dependence of the heating temperature of the silicon wafer on the lamps power and the heating time during rapid thermal processing using “UBTO 1801” unit by irradiating the wafer backside with an incoherent flow of constant density light. As a result, a mathematical model of silicon wafer temperature variation was developed on the basis of the equation of nonstationary thermal conductivity and known temperature dependencies of the thermophysical properties of silicon and the emissivity of aluminum and silver applied to the planar surface of the silicon wafer. For experimental determination of the numerical parameters of the mathematical model, silicon wafers were heated with light single pulse of constant power to the temperature of one of three phase transitions such as aluminum-silicon eutectic formation, aluminum melting and silver melting. The time of phase transition formation on the wafer surface during rapid thermal processing was fixed by pyrometric method. In accordance with the developed mathematical model, we determined the conversion coefficient of the lamps electric power to the light flux power density with the numerical value of 5.16∙10-3 cm-2 . Increasing the lamps power from 690 to 2740 W leads to an increase in the silicon wafer temperature during rapid thermal processing from 550°to 930°K, respectively. With that, the wafer temperature prediction error in compliance with developed mathematical model makes less than 2.3 %. The work results can be used when developing new procedures of rapid thermal processing for silicon wafers.


Sign in / Sign up

Export Citation Format

Share Document