Ultrasonic Nondestructive Techniques for Materials Characterization

MRS Bulletin ◽  
1996 ◽  
Vol 21 (10) ◽  
pp. 18-21 ◽  
Author(s):  
Theodore E. Matikas ◽  
Robert L. Crane

Characterization of materials properties is critical for the understanding of materials behavior and performance under operating conditions. Tailoring materials properties, which are functions of the materials states, is essential for advanced product design. The need to characterize materials for a myriad of applications has spurred the development of many new methods and instruments. Unfortunately many of these characterization tools require destructive sectioning. Also many characterization techniques do not provide key information about material parameters in their operating environments. An ideal characterization tool would provide data about the material properties that are related to micro-and macrostructure without destructive sectioning. Such data can only be obtained using nondestructive-evaluation (NDE) methodologies. Therefore NDE is essential for almost any industrial product. Nondestructive evaluation has become an integral part of materials research because it enables the determination of material parameters (such as micro- and macrostructure, stress, physical properties, and defects) at nearly any point, line, surface, or volume element of interest and at nearly any state during the life of the material. Nondestructive evaluation is based on many different methods that rely on elastic waves, penetrating radiation, light, electric and magnetic fields, chemical sensing, etc. The large number of potential methods makes NDE not a single field but a synergism of many scientific and engineering disciplines. Since it would be impractical here to present all the new NDE methodologies with application to materials research, this issue of MRS Bulletin focuses exclusively on those ultrasonic techniques that are increasingly important in materials characterization.

Gear Materials, Properties, and Manufacture explains how material-related properties and operating conditions affect the lifetime and performance of gears and the ways in which they fail. It begins with a review of the basic design and configuration of gears and related engineering considerations. It then examines the effect of friction and wear and the role of lubrication in gear failures. It explains how to calculate lubricant film thickness, defines lubrication regimes, and presents guidelines for selecting and applying lubricants for specific applications. The chapters that follow cover gear materials and manufacturing methods, providing details on metals and plastics and processes such as casting and forging, powder metallurgy, injection molding, machining, grinding, finishing, and carburizing and nitriding treatments. The final chapters discuss the types and causes of gear failures and the steps involved in failure analysis. They also explain how to assess fatigue damage and estimate remaining service life and describe the tests that are used to evaluate the durability of gears under load. For information on the print version, ISBN 978-0-87170-815-1, follow this link.


Author(s):  
I. G. Wright ◽  
B. A. Pint ◽  
J. P. Shingledecker ◽  
D. Thimsen

Proposed open and closed Brayton-type cycle systems employing supercritical CO2 (sCO2) as the working fluid develop hot gas path environments that present challenging requirements of strength and environmental resistance for the materials of construction. The likely materials properties required by different cycle configurations are examined and compared with the capabilities of available materials. In some instances where peak operating conditions in the turbines in closed-cycle systems approach 500°–700°C at 200 bar, or 1150°C at 300 bar for open cycles, the range of available alloys with the requisite temperature-strength and capabilities is limited. The cycles are highly recuperated: hot, lower-pressure turbine exhaust is used to pre-heat high-pressure CO2 entering the external heater or combustor just upstream of the turbine. Obviously, there is a need to match alloy capabilities with the performance requirements of individual components. Where alloys are employed under conditions beyond current experience, or in unusual configurations (the unique properties of sCO2 may impact the design of some components), practical acceptance will depend on successful qualification testing involving close collaboration among equipment manufacturers, materials suppliers, and materials research and development groups. Examination of the range of scenarios published for sCO2 turbine systems suggests that approaches used in the U.S. Advanced, Ultra-Supercritical (A-USC) Steam Boiler program, and some of the data generated for fabrication, joining, mechanical properties, and performance in simulated service environments in that program, will be applicable to some of the components in these systems. An attempt to elaborate and prioritize the materials property and qualification activities required for the successful realization of these sCO2 cycles is presented as a guide to activities needed to facilitate materials selection.


Author(s):  
Scott Ferguson ◽  
Afreen Siddiqi ◽  
Kemper Lewis ◽  
Olivier L. de Weck

The demands on today’s products have become increasingly complex as customers expect enhanced performance across a variety of diverse and changing system operating conditions. Reconfigurable systems are capable of undergoing changes in order to meet new objectives, function effectively in varying operating environments, and deliver value in dynamic market conditions. Research in the design of such responsive and changeable systems, however, currently faces impediments in effective and clear discourse due to ambiguity in terminology. Definitions of the terms flexibility and reconfigurability, two related concepts in reconfigurable system design, are explored based on their original lexical meanings and current understanding in design literature. Design techniques that incorporate flexibility both in the design (form) and performance (function) space are presented. Based upon this literature survey, a classification scheme for flexibility is proposed, and its application to reconfigurable system design is explored. This paper also presents recent methodologies for reconfigurable system design and poses important research questions that remain to be investigated.


2019 ◽  
Vol 16 (3) ◽  
pp. 276-289
Author(s):  
N. V. Savenkov ◽  
V. V. Ponyakin ◽  
S. A. Chekulaev ◽  
V. V. Butenko

Introduction. At present, stands with running drums are widely used for various types of tests. Power stands play a special role. Such stands take the mechanical power from the driving wheels of the car. This simulates the process of movement of the vehicle under operating conditions. Such equipment has various designs, principles of operation and performance. It is also used in tests that are different by purpose, development stages and types: research, control, certification, etc. Therefore, it is necessary in order to determine the traction-speed, fuel-efficient and environmental performance characteristics.Materials and methods. The paper provides the overview of the power stands with running drums, which are widespread on the domestic market. The authors carried out the analysis of the main structural solutions: schemes of force transfer between the wheel and the drum; types of loading devices; transmission layout schemes and features of the control and measuring complex. The authors also considered corresponding advantages and disadvantages, recommended spheres of application, demonstrated parameters and characteristics of the units’ workflow, presented components and equipment.Discussion and conclusions. The authors critically evaluate existing models of stands with running drums. Such information is useful for choosing serial models of stands and for developing technical tasks for designing or upgrading the equipment.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


Author(s):  
Ioannis Vlaskos ◽  
Ennio Codan ◽  
Nikolaos Alexandrakis ◽  
George Papalambrou ◽  
Marios Ioannou ◽  
...  

The paper describes the design process for a controlled pulse turbocharging system (CPT) on a 5 cylinder 4-stroke marine engine and highlights the potential for improved engine performance as well as reduced smoke emissions under steady state and transient operating conditions, as offered by the following technologies: • controlled pulse turbocharging, • high pressure air injection onto the compressor impeller as well as into the air receiver, and • an electronic engine control system, including a hydraulic powered electric actuator. Calibrated engine simulation computer models based on the results of tests performed on the engine in its baseline configuration were used to design the CPT components. Various engine tests with CPT under steady state and transient operating conditions show the engine optimization process and how the above-mentioned technologies benefit engine behavior in both generator and propeller law operation.


Author(s):  
Sannmit Shinde ◽  
Ali P. Gordon ◽  
Zachary Poust ◽  
Steve Pitolaj ◽  
Jim Drago ◽  
...  

Pressurized vessels that transfer media from one location to another often contain a bolted connection. Gaskets are essential for these systems since they confer high levels of leak mitigation across of range of operating environments (i.e., internal pressure and temperature). The balance of both sealability and compressibility must be displayed in candidate gasket materials to be subjected to aggressive operating conditions. Historically, thin gauge gasket (i.e., 1/16” thick) confer high sealability while thick gaskets offer superior compressibility (i.e., 1/8”). Fabricated with skive cut, ceramic particle-reinforced PTFE, these materials display linear viscoelastic behavior that allow consolidation to occur. For example, GYLON® 3504 is filled with Aluminosilicate Microspheres, GYLON®3510 is filled with barium sulfate, respectively, to efficiently fill crevices along the surfaces of the flange. Novel textured PTFE gasket (3504 EPX and 3510 EPX) have been developed to simultaneously confer sealability and compressibility compared to flat products. A design of experiments (DoE) approach is applied to characterize the factors that influence load relaxation responses of the both candidate textured PTFE (dual-face honeycomb) and existing (flat) gasket styles. Using an instrumented test platform analyzed. A new parameter is presented to quantify gasket efficiency. The collection of efficiency measurement methods and approach to re-torque optimization convey a novel framework that designers can invoke to facilitate improved flange performance.


Author(s):  
Xiaowei Fan ◽  
Fang Wang ◽  
Huifan Zheng ◽  
Xianping Zhang ◽  
Di Xu

The refrigerant mixtures provide an important direction in selecting new environment-friendly alternative to match the desirable properties with the existing halogenated refrigerants or future use in the new devices, in which, HFCs refrigerants with zero ODP combined with HCs refrigerants with zero ODP and lower GWP are of important value in the fields of application. In the present work, research on HFC125/HC290 (25/75 by mass) binary refrigerant mixture used in heat pumps was carried out, and parameters, factors affecting the performance were investigated, and compared with that of HCFC22 under the same operating conditions. It has been found that the new mixture can improve the actual COP by 2 to 13% and hence it can reduce the energy consumption by 20 to 31.5%. The overall performance has proved that the new refrigerant mixture could be a promising substitute for HCFC22.


Sign in / Sign up

Export Citation Format

Share Document