Characterizing Polymer Surfaces and Interfaces

MRS Bulletin ◽  
1996 ◽  
Vol 21 (1) ◽  
pp. 49-53 ◽  
Author(s):  
T.R Russell

The presence of a surface or interface can markedly alter the configuration and spatial distribution of polymer molecules. In the bulk, polymer molecules—comprised of numerous monomers covalently linked together—pervade 10s of nanometers spatially. However, packing such chains at an interface—under the constraint that a solid polymer is essentially incompressible—necessitates perturbations to the chain configurations near the interface. This may result in a collapse of coils at the surface or in a preferential orientation of the monomers with respect to the interface plane. For amorphous homopolymers, however, simulations indicate that, on a segmental level, surface effects are generally damped within several segment diameters from the surface. Interactions between the surface and the polymer chains place additional constraints on the molecular configurations. As the architecture of the polymer chain becomes more complex, as with diblock copolymers in which two chemically distinct polymer chains covalently bond together at one end, the packing of chains at the interface must take into account the relative interactions of the two portions of the chains with the interface. Due to the connectivity of the blocks, preferential interactions of the blocks with the interface can influence the spatial distribution of the chains far from the interface. As the number of components increases, as with a simple binary-polymer mixture, not only must packing constraints be satisfied, but also the interactions of the two chains with the surface and with each other must be taken into account. In the case of homogeneous mixtures, the preferential interaction of one chain with an interface can lead to a substantial excess of that chain at the interface which, depending upon the proximity to the demixing point, can lead to surface effects that propagate many molecular diameters into the sample. The key, however, is the connectivity of the monomers in the polymer chain, which can enhance surface effects, as in the case of block copolymers or polymer mixtures, or suppress surface effects, as in the case of homopolymers.

e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeedeh Mazinani ◽  
Farhad Sharif ◽  
Naser Mohammadi

AbstractThe change in the phase diagram of polymer mixtures under flow is an important issue since flow may promote mixing or demixing of the phases in a polymer mixture. This work, compared to previous studies, presents a different approach with special attention to the rheology of polymer solutions and flow conditions. Different approaches including Marrucci's approach in calculating stored elastic free energy (ΔGE) have been reviewed. Marrucci’s equation is obtained based on a fundamental analysis of polymer chains microstructure. The new approach introduces the proper viscoelastic constitutive equations to estimate ΔGE. Selecting the appropriate rheological model is essential to correctly estimate the state of stress and deformation rates due to the flow. Moreover, the parameters of viscoelastic constitutive equations were defined, from the microstructural viewpoint, as functions of composition and temperature in semi-concentrated regions. Finally, flow induced change in the phase diagram of polymer solutions is predicted for a well-defined flow condition (constant shear rate and stress), and the results are compared with the previously reported experimental observations of mixing and demixing.


Author(s):  
Alexander Muranov ◽  
Alexey Semenov ◽  
Anatoly Kutsbakh ◽  
Boris Semenov

The article discusses one of the modern areas of powder metallurgy – the technology of manufacturing shaped parts by the powder injection molding (PIM). For the powder-polymer mixture (feedstock) with a wax-polypropylene binder of the solvent-thermal type of removal by isobaric volume dilatometry, the dependence of PVT state parameters was studied. For each component of the polymer binder, the dependence of pressure on the temperature of phase transition was obtained. As a result of mathematical processing and analysis of PVT data for the feedstock of the studied type, a technological window of parameters has been determined that allows injection molding of «green parts» with minimal volume shrinkage. The results of a comparative analysis of the compaction of feedstock with a polymer binder catalytic and solution-thermal type of removal are presented.


Computation ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 57
Author(s):  
Constantinos J. Revelas ◽  
Aristotelis P. Sgouros ◽  
Apostolos T. Lakkas ◽  
Doros N. Theodorou

In this article, we publish the one-dimensional version of our in-house code, RuSseL, which has been developed to address polymeric interfaces through Self-Consistent Field calculations. RuSseL can be used for a wide variety of systems in planar and spherical geometries, such as free films, cavities, adsorbed polymer films, polymer-grafted surfaces, and nanoparticles in melt and vacuum phases. The code includes a wide variety of functional potentials for the description of solid–polymer interactions, allowing the user to tune the density profiles and the degree of wetting by the polymer melt. Based on the solution of the Edwards diffusion equation, the equilibrium structural properties and thermodynamics of polymer melts in contact with solid or gas surfaces can be described. We have extended the formulation of Schmid to investigate systems comprising polymer chains, which are chemically grafted on the solid surfaces. We present important details concerning the iterative scheme required to equilibrate the self-consistent field and provide a thorough description of the code. This article will serve as a technical reference for our works addressing one-dimensional polymer interphases with Self-Consistent Field theory. It has been prepared as a guide to anyone who wishes to reproduce our calculations. To this end, we discuss the current possibilities of the code, its performance, and some thoughts for future extensions.


2018 ◽  
Vol 148 (20) ◽  
pp. 204901 ◽  
Author(s):  
P. H. L. Martins ◽  
J. A. Plascak ◽  
M. Bachmann

MRS Advances ◽  
2016 ◽  
Vol 1 (27) ◽  
pp. 1971-1976
Author(s):  
Troels Røn ◽  
Irakli Javakhishvili ◽  
Søren Hvilsted ◽  
Katja Jankova ◽  
Seunghwan Lee

ABSTRACTFor biological and mechanical systems involving moving parts, surface slipperiness is often a critical attribute for their optimal functions. Surface grafting with hydrophilic polymers is a powerful means to render materials slippery in aqueous environment. In “inverted grafting-to approach”, the hydrophilic polymer chains of amphiphilic diblock copolymers dispersed within a poly(dimethylsiloxane) (PDMS) network are selectively segregated upon exposure to aqueous solution. This allows formation of extremely stable brush-like polymer layers. Tribological application of inverted grafting-to approach was successfully demonstrated with PDMS-block-poly(acrylic acid) (PDMS-b-PAA) dispersed within thin PDMS films on PDMS blocks by showing friction coefficients (µ) of ca 10-2 to 10-3, depending on the load, pH and buffer salinity in the absence of other external re-supply of PAA chains. Further manipulations of the thin PDMS film incorporating PDMS-b-PAA to optimize the tribological properties are presented. Lastly, first trials to employ PAA-grafted PDMS surface to generate in-vitro mucosae model are also presented and discussed.


1981 ◽  
Vol 42 (8) ◽  
pp. 1145-1150 ◽  
Author(s):  
J.F. Joanny ◽  
F. Brochard
Keyword(s):  

Author(s):  
А.Н. Поддубный

Spatial distribution of surface Rayleigh acoustic wave propagating along the surface of GaAs semiconductor covered by a periodic grating of gold stripes is calculated. We demonstrated that when the lattice has no center of spatial inversion the distribution of deformation for the surface wave with the Bloch wave vector kx = 0 is asymmetric and characterized by nonzero mean momentum in the interface plane and nonzero degree of transverse polarization in the plane perpendicular to the surface. The work has been supported by the Russian Science Foundation Grant No. 20-12-00194.


1968 ◽  
Vol 23 (6) ◽  
pp. 788-797 ◽  
Author(s):  
K. H. Ebert ◽  
G. Schenk

According to the proposed mechanism, the enzymic formation of dextran from sucrose consists of two reaction steps: the propagation reaction forming polymer molecules by an insertion type growth, and the acceptor reaction leading to the termination of the polymer chains. This mechanism is of a more general applicability; it explains hydrolysis, transfer and poly reactions.A complete kinetic analysis is given for the dextran formation and values for the reaction constants Vm, Km and Ka (the Michaelis constant of the acceptor reaction) have been evaluated. Very good agreement between the rate data calculated from the mechanism and the experimental data has been obtained.From experiments with a series of radioactively labelled acceptors it was established that the acceptor reaction, in fact, proceeds as proposed by the mechanism. Further, it was found that strong acceptors, leading to the formation of low molecular weight dextrans, do not inhibit the reaction rate, and that weak acceptors, which inhibit the reaction rate, have only a small effect on the molecular weights. This correlation has also been demonstrated in terms of the proposed reaction mechanism.


2018 ◽  
Vol 24 (3) ◽  
pp. 862-873 ◽  
Author(s):  
Mikhail Itskov ◽  
Vu Ngoc Khiêm ◽  
Sugeng Waluyo

The mechanical response of dielectric elastomers can be influenced or even controlled by an imposed electric field. It can, for example, cause mechanical stress or strain without any applied load; this phenomenon is referred to as electrostriction. There are many purely phenomenological hyperelastic models describing this electroactive response of dielectric elastomers. In this contribution, we propose an electromechanical constitutive model based on molecular chain statistics. The model considers polarization of single polymer chain segments and takes into account their directional distribution. The latter results from non-Gaussian chain statistics, taking finite extensibility of polymer chains into account. The resulting (one-dimensional) electric potential of a single polymer chain is further generalized to the (three-dimensional) network potential. To this end, we apply directional averaging on the basis of numerical integration over a unit sphere. In a special case of the eight-direction (Arruda–Boyce) model, directional averaging is obtained analytically. This results in an invariant-based electroelastic constitutive model of dielectric elastomers. The model includes a small number of physically interpretable material constants and demonstrates good agreement with experimental data, with respect to the electroactive response and electrostriction of dielectric elastomers.


Sign in / Sign up

Export Citation Format

Share Document