Nanomechanical and nanoscratch behavior of oxides formed on inconel 617 at 950 °C

Author(s):  
Md Saifur Rahman ◽  
Andreas A. Polycarpou
Keyword(s):  
Author(s):  
Huaidong Yang ◽  
Itzhak Green

The current work employs a two-dimensional plane strain finite element analysis to investigate the unidirectional sliding contact between a deformable half-cylinder and a deformable flat block. The unidirectional sliding is governed by a displacement-controlled action where the materials of the two contacting bodies are first set to identical steels at 20 ℃ and then to Inconel 617 and Incoloy 800H at 800 ℃. First, a normal interference (indentation) is applied, which is followed by unidirectional sliding. The von Mises stress distribution, plastic strain distribution, junction growth, normal force, tangential force, effective coefficient of friction, and scars on the surface of the block are obtained during the sliding motion. The leading edge of the contacting area and the bulk material under the leading edge experience large von Mises stresses. The large plastic strain is found on the surface of the block, and forms a “pocket” shape under the surface. The junction growth is also investigated, showing the direction of the growth is in the same direction of the tangential force that the weaker material experiences. The forces and the effective coefficient of friction are found to stabilize after a certain sliding distance, and the effective coefficient of friction converges to the coefficient of friction used in the model. Pileup is found on the surface of the block after a sufficient unidirectional sliding distance.


2015 ◽  
Vol 226 ◽  
pp. 95-98
Author(s):  
Robert Kocurek ◽  
Janusz Adamiec

Defining the susceptibility to hot cracking of Inconel 617 alloy welds is essential for assessment welding and pad welding technology. Because of that technological transvarestraint test was performed in the study. Test simulates strains that form in the material during welding. Transvarestraint test enables the assessment of susceptibility to hot cracking and resistance to hot cracking characterized by cracking threshold (εp) and critical strain speed (CSS). Performed investigations enabled to characterize the phenomena occurring in Inconel 617 during welds crystallization, which are important for engineers selecting the joining technology of Inconel 617.


Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 514 ◽  
Author(s):  
Yung-I Chen ◽  
Zhi-Ting Zheng ◽  
Jia-Wei Jhang

Author(s):  
Kun Mo ◽  
Wei Lv ◽  
Hsiao-Ming Tung ◽  
Di Yun ◽  
Yinbin Miao ◽  
...  

In this study, we employed pressurized creep tubes to investigate the biaxial thermal creep behavior of Inconel 617 (Alloy 617) and Haynes 230 (Alloy 230). Both alloys have been considered to be the primary candidate structural materials for very high temperature reactors (VHTRs) due to their exceptional high-temperature mechanical properties. The current creep experiments were conducted at 900°C for the effective stress range of 15–35 MPa. For both alloys, complete creep strain development with primary, secondary, and tertiary regimes were observed in all studied conditions. The tertiary creep was found to be dominant in the entire creep lives of both alloys. With increasing applied creep stress, the fraction of the secondary creep regime decreases. The nucleation, diffusion, and coarsening of creep voids and carbides on grain boundaries was found to be the main reason for the limited secondary regime, and was also found to be the major cause of creep fracture. The creep curves computed using the adjusted creep equation of the form ε = Aσ cosh−1(1 + rt) + Pσntm agree well with the experimental results for both alloys at the temperatures of 850–950°C. Paper published with permission.


2019 ◽  
Vol 193 (9) ◽  
pp. 998-1012 ◽  
Author(s):  
Md Saifur Rahman ◽  
Jie Ding ◽  
Ali Beheshti ◽  
Xinghang Zhang ◽  
Andreas A. Polycarpou

2017 ◽  
Vol 21 (5) ◽  
pp. 273-283
Author(s):  
Noppakorn Phuraya ◽  
Isaratat Phung-on ◽  
Jongkol Srithorn

Sign in / Sign up

Export Citation Format

Share Document