scholarly journals Location of overhead power lines within Bukowe hills mesoregion in relation to the assessment of forest area fragmentation

2021 ◽  
Vol 3 ◽  
pp. 41-52
Author(s):  
Paweł Pieńkowski ◽  
◽  
Marcin Stoltman ◽  
Bogusław Zakrzewski ◽  
◽  
...  

National power grid in Poland requires modernisation, therefore by 2030 numerous actions are scheduled regarding the expansion of the existing network and the construction of new electricity transmission lines (power lines). The planned activities will undoubtedly change the quality of landscape and result in fragmentation of forest habitats, some of which are characterised by high biodiversity and constitute a key element of ecological corridors. The aim of the present paper was to outline the issue of the impact of the power line corridors on forest habitat fragmentation, as well as to present the GuidosToolbox software (Graphical User Interface for the Description of image Objects and their Shapes) used, among other things, for the determination of the degree of fragmentation of forest habitats. The analysis concerned the Puszcza Bukowa forest, which is a part of the Natura 2000 network and is protected under the Szczecin Landscape Park ‘Puszcza Bukowa’. Despite abundant natural assets of the Puszcza Bukowa forest, it was necessary to run many power lines through its area due to location of the forest in the vicinity of the Szczecin agglomeration. The course of power lines contributed to the fragmentation of the discussed forest complex and to the depletion of its interior classified with the GuidosToolbox software as ‘Intact’. The software discussed in the present paper may prove useful in the identification of the degree of forest area fragmentation, connected with the course of high-voltage power transmission lines, and in the assessment of the impact of the planned investment projects on biocenoses.

2020 ◽  
pp. 63-68
Author(s):  
D. A. Polyakov ◽  
◽  
N. A. Tereschenko ◽  
I. V. Komarov ◽  
K. I. Nikitin ◽  
...  

The article describes the study of the characteristics of partial discharges (PD) in various types of artificial defects in cable lines. A total of 13 types of insulation defects are considered. The PD measurements are carried out using a high AC voltage source and a commercial PD recorder. For each type of defect, diagrams of the amplitude-phase distribution of PD (APDPD), the average value of the apparent discharge, and the PD intensity are obtained. The results of the study show that most of the defects of insulators of overhead power lines have a relatively high intensity of partial discharges with a small average apparent charge. In the samples of cable lines, relatively high values of intensity and average apparent discharge are recorded in the presence of a defect in the end seal and a defect in the ground electrode in the form of a needle. The results obtained can be used in the development of devices for detecting defects, as well as for expanding the base of diagrams (APDPD)


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1136
Author(s):  
Azhan Fikry ◽  
Siow Chun Lim ◽  
Mohd Zainal Abidin Ab Kadir

Background: There has been rising concern amongst the public regarding their home's proximity to high tension power transmission lines. The primary cause of fear is the impact of the electromagnetic interference (EMI) radiation on the nearby occupants' health. Despite the presence of national permissible limits of EMI radiation, there is still lack of information with regards to the EMI radiation of the types of power lines configuration in Malaysia. Methods: The electric and magnetic fields of several selected power transmission lines were simulated using the EMFACDC software program from the recommendation ITU-T K.90. Five types of power transmission lines available in Malaysia are considered. Results: It was found that the simulated electric and magnetic field levels at all the power lines' right of way (ROW) boundary complies with the prescribed exposure limit. However, the electromagnetic fields (EMF) level increases significantly as the separation distance is reduced from 30m. For a more conservative approach, the ROW can be set at 30m across all transmission voltage level and corridor area condition. Conclusion: It can be concluded that Malaysia's power transmission lines are within the prescribed exposure limits. To further minimize the electric and magnetic field level, it is recommended that the residential building should be built at least 30 meters away from the power transmission lines, especially for the 275kV double circuit, 275/132kV quadruple circuit, and 500kV double circuit lines.


Author(s):  
M. P. Goryachev ◽  
M. F. Sadykov ◽  
D. A. Yaroslavskiy

Structural elements of overhead power transmission lines are experiencing both horizontal and vertical loads. Wires and cables are elements of the overhead power line, on which changes in mechanical loads are observed to a greater degree. This occurs due to the change in the tension force of the wire/cable depending on the temperature and the formation of icy-rime deposits on it, as well as fluctuations in wind gusts. The article describes the most common systems and methods for determining the mechanical loads on an overhead power transmission line. A method is proposed for calculating the mechanical loads on an overhead transmission line based on mathematical models of a flexible wire, rope and a model for determining ice deposits on wires, taking into account the rotation of the wire/cable around its axis. A comparison of the improved inclinometry method with the method developed earlier for the case of formation of ice deposits on the S-50 cable has been carried out. A comparison was made on the error in determining the tension of the S-50 ground-wire protection cable using the method developed to control the mechanical parameters of overhead power lines, which takes into account the wire/cable rotation around its axis and the method for determining icy-rime deposits developed earlier. The developed method allows determining the elongation of the wire/cable in the span with one anchor support, as well as the strength of its tension with greater accuracy. However, additional clarification is required due to the influence of the wind, the formation of icy-rime deposits of various shapes, as well as the structural limitations of the wire/cable rotation when attaching it to the support.


2014 ◽  
Vol 17 (1) ◽  
pp. 16-29
Author(s):  
Long Van Hoang Vo ◽  
Tu Phan Vu

The population explosion and development of the national economy are two main causes of increasing the power demand. Besides, the Distributed Generations (DG) connected with the power transmission and distribution networks increase the transmission power on the existing lines as well. In general, for solving this problem, power utilities have to install some new power transmission and distribution lines. However, in some cases, the install of new power lines can strongly effect to the environment and even the economic efficiency is low. Nowadays, the problem considered by scientists, researchers and engineers is how to use efficiently the existing power transmission and distribution lines through calculating and monitoring their current carrying capacity at higher operation temperature, and thus the optimal use of these existing lines will bring higher efficiency to power companies. Generally, the current carrying capacity of power lines is computed based on the calculation of their thermal fields illustrated in IEEE [1], IEC [2] and CIGRE [3]. In this paper, we present the new approach that is the application of the finite element method based on Comsol Multiphysics software for modeling thermal fields of overhead power transmission lines. In particular, we investigate the influence of environmental conditions, such as wind velocity, wind direction, temperature and radiation coefficient on the typical line of ACSR. The comparisons between our numerical solutions and those obtained from IEEE have been shown the high accuracy and applicability of finite element method to compute thermal fields of overhead power transmission lines.


2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3014 ◽  
Author(s):  
Bushra Jalil ◽  
Giuseppe Riccardo Leone ◽  
Massimo Martinelli ◽  
Davide Moroni ◽  
Maria Antonietta Pascali ◽  
...  

The power transmission lines are the link between power plants and the points of consumption, through substations. Most importantly, the assessment of damaged aerial power lines and rusted conductors is of extreme importance for public safety; hence, power lines and associated components must be periodically inspected to ensure a continuous supply and to identify any fault and defect. To achieve these objectives, recently, Unmanned Aerial Vehicles (UAVs) have been widely used; in fact, they provide a safe way to bring sensors close to the power transmission lines and their associated components without halting the equipment during the inspection, and reducing operational cost and risk. In this work, a drone, equipped with multi-modal sensors, captures images in the visible and infrared domain and transmits them to the ground station. We used state-of-the-art computer vision methods to highlight expected faults (i.e., hot spots) or damaged components of the electrical infrastructure (i.e., damaged insulators). Infrared imaging, which is invariant to large scale and illumination changes in the real operating environment, supported the identification of faults in power transmission lines; while a neural network is adapted and trained to detect and classify insulators from an optical video stream. We demonstrate our approach on data captured by a drone in Parma, Italy.


Author(s):  
Abdullayev Ibrohim Numanovich ◽  
Marupov Azizxon Abbosxonovich

Practice shows that the lack or late receipt of information with special conditions for the use of territories often has a negative impact not only on the budget and time frame for the construction of a real estate facility, but also on the fate of the built facility in general. The protection areas of underground and above-ground engineering communications play an important role for the future in land use. And also, when using these lands for agricultural needs, with the correct organization of cadastral relations represents the relevance of the issue under study. In the present, as an example, a section of high-voltage power transmission lines (power lines) of 1 km length is presented. KEY WORDS: security zones, land plot, information about zones, high-voltage zones, power transmission lines, pipelines, gas pipelines, bonality score, engineering networks, construction of buildings and structures.


2018 ◽  
Author(s):  
Mirelle C. Bueno ◽  
Guilherme P. Coelho ◽  
Ana Estela A. Da Silva ◽  
André L. S. Gradvohl

Among the phenomena that occur on the surface of the Sun, solar flares may cause several damages, from short circuits in power transmission lines to complete interruptions in telecommunications systems. In order to mitigate these effects, many works have been dedicated to the proposal of mechanisms capable of predicting the occurrence of solar flares. In this context, the present work sought to evaluate two aspects related to machine learning-based solar flare forecasting: (i) the impact of class imbalance in training datasets on the performance of the predictors; and (ii) whether the incorporation of a pre-clustering step prior to the classifiers training contributes to a better prediction.


2021 ◽  
Vol 11 (24) ◽  
pp. 11608
Author(s):  
Alina Vinogradova ◽  
Alexander Vinogradov ◽  
Vadim Bolshev ◽  
Andrey Izmailov ◽  
Alexey Dorokhov ◽  
...  

Sectionalizing 0.4 kV power transmission lines (PTL) improves power supply reliability and reduces electricity undersupply through the prevention of energy disconnection of consumers in the event of a short circuit in the power line behind the sectionalizing unit (SU). This research examines the impact of sectionalizing on power supply reliability and reviews the literature on sectionalizing unit allocation strategies in electrical networks. This paper describes the experience of the use of sectionalizing units with listing strengths and weaknesses of adopted technical solutions and describes the new structure of sectionalizing units. A new methodology is proposed, whereby there are two criteria for allocating SU in 0.4 kV power transmission lines. The first criterion is the sensitivity limits against single-phase short circuits used for calculating the maximum distance at which SU can be installed. The second criterion is power supply reliability improvement, evaluating the cost-effectiveness of installing sectionalizing equipment by reducing power supply outage time. The established methodology was put to the test on an actual electrical system (Mezenka village, Orel area, Russia), which demonstrated that the installation of a sectionalizing unit paid off.


2021 ◽  
Vol 289 ◽  
pp. 01013
Author(s):  
Vitaly Novokreshchenov

With series compensation of the line reactance, the problem of its protection against overcurrents arises regarding relay protection. The greater the degree of compensation, the greater the problem. When compensating for more than 50% of the reactance of the line, the protection of power transmission lines becomes practically impossible due to the failure or false operation of all existing kinds and types of protection [1, 2]. Therefore, as for now, the compensation of the line reactance usually is no more than 50% [3, 4], which does not allow to reveal the full potential of the line in terms of its transmission capacity. The goal of this research was to study the processes occurring in emergency modes on power lines equipped with a series capacitor bank, the understanding of which would help to produce algorithms that can protect power lines with SCB with a degree of the longitudinal resistance compensation of the line of more than 50%.


Sign in / Sign up

Export Citation Format

Share Document