scholarly journals Implementation of sulfuric acid leaching for aluminum and iron removal for improvement of low-grade silica from quartz sand of Sukabumi, Indonesia

2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 32-40
Author(s):  
Eko Sulistiyono ◽  
Murni Handayani ◽  
Agus Budi Prasetyo ◽  
Januar Irawan ◽  
Eni Febriana ◽  
...  

Indonesia has very abundant reserves of silica, but progressive studies on the deposition of this material are very few, resulting in limited applications of silica. This work refers to the purification of silica from quartz sand originated from Sukabumi, Indonesia to obtain high-purity silica, which can be applied as important raw materials for special purposes. The aim of our research is to improve low-grade silica from quartz sand by removing impurities, especially aluminum and iron removal, using sulfuric acid leaching. In order to achieve the aim, the effect of reaction time and sulfuric acid concentration on the leaching process was investigated. The effectiveness of sulfuric acid for the impurities removal was observed. The chemical composition of the samples before and after leaching was studied using X-ray fluorescence. The mineralogical analysis of the starting materials and the products was conducted using X-ray diffraction. Microstructure analysis was performed using a scanning electron microscope, and EDS test was used to show the element composition at different points. The experimental results show that the optimum condition of the leaching process occurs at a reaction time of 5 hours with a sulfuric acid concentration of 10 N. The silica levels increase from 93.702 % to 96.438 %. Aluminum and iron impurities reduced from 4.691 % to 2.712 % and from 0.641 % to 0.094 %, respectively. At this optimum point, sulfuric acid is very effective to remove aluminum and iron impurities up to 42 % and 85 %, respectively. The results of this research can be a very significant opportunity to increase the value added of quartz sand from Sukabumi, which can enhance the quality of low-grade silica to provide better raw materials for glass industries.

2013 ◽  
Vol 826 ◽  
pp. 122-125 ◽  
Author(s):  
Jin Lin Yang ◽  
Hong Mei Zhang ◽  
Gui Fang Wang ◽  
Shao Jian Ma ◽  
Min Zhang

In this paper, sulfuric acid leaching was carried out to assess the effect of several parameters on metal extraction in a low grade complex gossan ore in which the grade of zinc and iron is 13% and 40.2%, respectively. Parameters, such as sulfuric acid concentration, liquid to solid ratio and leaching temperature, were studied. The results show that the zinc leaching rate is almost 80%, while the iron leaching rate is about 45% used strong acid with 200g/L. It can be seen from the results that sulfuric acid leaching could not effectively recover zinc from gossan ores studied in this paper because of iron dissolving greatly.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lijie Chen ◽  
Jiacong Xu ◽  
Xiaoqiang Yu ◽  
Lei Tian ◽  
Ruixiang Wang ◽  
...  

Rare earth element recovery in molten salt electrolysis is approximately between 91 and 93%, whereof 8% is lost in waste molten salt slag. Presently, minimal research has been conducted on the technology for recycling waste rare earth molten salt slag, which is either discarded as industrial garbage or mixed with waste slag into qualified molten salt. The development of a new approach toward the effective treatment of rare earth fluoride molten salt electrolytic slag, which can recycle the remaining rare earth and improve the utilization rate, is essential. Herein, weak magnetic iron separation, sulfuric acid leaching transformation, water leaching, hydrogen fluoride water absorption, and cycle precipitation of rare earth are used to recover rare earth from their fluoride molten salt electrolytic slag, wherein the thermodynamic and kinetic processes of sulfuric acid leaching transformation are emphatically studied. Thermodynamic results show that temperature has a great influence on sulfuric acid leaching. With rising temperature, the equilibrium constant of the reaction gradually increases, and the stable interval of NdF3 decreases, while that of Nd3+ increases, indicating that high temperature is conducive to the sulfuric acid leaching process, whereof the kinetic results reveal that the activation energy E of Nd transformation is 41.57 kJ/mol, which indicates that the sulfuric acid leaching process is controlled by interfacial chemical reaction. According to the Nd transformation rate equation in the sulfuric acid leaching process of rare earth fluoride molten salt electrolytic slag under different particle size conditions, it is determinable that with the decrease of particle size, the reaction rate increases accordingly, while strengthening the leaching kinetic process. According to the equation of Nd transformation rate in the sulfuric acid leaching process under different sulfuric acid concentration conditions, the reaction series of sulfuric acid concentration K = 6.4, which is greater than 1, indicating that increasing sulfuric acid concentration can change the kinetic-control region and strengthen the kinetic process.


2013 ◽  
Vol 813 ◽  
pp. 269-272
Author(s):  
Gui Ming Shi ◽  
Xia Jing Yu

For a nickel oxide ore, 1# ore sample was treated by sulfuric acid leaching and 2# ore sample was treated by ammonium sulfate roasting-sulfuric acid leaching through exploring experiments. The leaching rate of 92.04% with l# nickel oxide ore and the leaching rate of 72.36% with 2# nickel oxide ore were obtained by conducting the conditional experiments of sulfuric acid concentration, leaching time, ammonium sulfate dosage and so on.


2020 ◽  
Vol 989 ◽  
pp. 559-563
Author(s):  
Ashimkhan T. Kanayev ◽  
Khussain Valiyev ◽  
Aleksandr Bulaev

The goal of the present work was to perform bioleaching of uranium from low grade ore from Vostok deposit (Republic of Kazakhstan), which was previously subjected to long-term acid leaching. The ore initially contained from 0.15 to 0.20% of uranium in the form of uraninite, but ore samples used in the study contained about 0.05% of uranium, as it was exhausted during acid leaching, and uranium was partially leached. Representative samples of ore were processed in 1 m columns, leach solutions containing 5, 10, 20 g/L of sulfuric acid and bacterial cells (about 104) were percolated through the ore. Leaching was performed at ambient temperature for 70 days. In one of the percolators, the leaching was performed with leaching solution containing 10 g/L of H2SO4, cells of A. ferrooxidans, and 0.5 g/L of formaldehyde. Leaching with the solution containing 5, 10, and 20 g/L of sulfuric acid made it possible to extract 50, 53, and 58% of uranium. Addition of formaldehyde in leach solution led to the decrease in uranium extraction extent down to 37%. Thus, the results of the present work demonstrated that uranium ore exhausted during long-term acid leaching may be successfully subjected to bioleaching, that allows extracting residual quantities of uranium. Leaching rate of uranium from exhausted ore depended on both sulfuric acid concentration and microbial activity of bacteria isolated from acid mine drainage, formed on uranium deposit. In the same time, acid mine drainage may be used as a source of inoculate, to start bioleaching process.


2013 ◽  
Vol 699 ◽  
pp. 28-33 ◽  
Author(s):  
Yun Fei Long ◽  
Jing Su ◽  
Xian Jia Ye ◽  
Hai Feng Su ◽  
Yan Xuan Wen

Bagasse, a fibrous residue from sugarcane juice extraction, was used as a reducing agent to roast low-grade pyrolusite in N2. The roasted ore was further leached using sulfuric acid, to convert manganese oxide in the ore to manganese sulfate. The effects of weight ratio of bagasse to manganese ore, roasting temperature, roasting time, leaching temperature, leaching time, stirring speed and sulfuric acid concentration on the leaching recovery of manganese were investigated. Optimal conditions were determined to be a bagasse to manganese ore weight ratio of 0.8:10, roasting temperature of 500°C for 40 min, leaching stirring speed of 100 rpm, sulfuric acid concentration of 3 mol•L-1 and leaching temperature of 50°C for 40 min. The leaching recovery rate of manganese was up to 97.8% at the optimal conditions.


2012 ◽  
Vol 454 ◽  
pp. 329-332 ◽  
Author(s):  
Jin Lin Yang ◽  
Shao Jian Ma ◽  
Wei Mo ◽  
Jin Peng Feng ◽  
Xiu Juan Su ◽  
...  

In this paper, the conventional physical separation method such as flotation, gravity separation, magnetic separation, alkaline leaching and sulfuric acid leaching were studied. The effects of grinding fineness, amount of agent, magnetic intensity, roasting temperature, roasting time, the leaching agent and leaching time on the leaching of zinc were investigated, respectively. The results show that the leaching rate of zinc is below 50% in the conventional alkaline leaching, and the leaching rate of zinc is below 85% and the leaching rate of iron is above 35% in sulfuric acid leaching. Compared with XRD pattern of the raw ore, the different diffraction peaks of smithsonite is off in alkaline leaching products. In sulfuric acid leaching, the different diffraction peaks of smithsonite are off in the leaching products when sulfuric acid concentration is less than 60 g/L. After 60 g/L, the different diffraction peaks of smithsonite and siderite are off in the leaching products.


2013 ◽  
Vol 826 ◽  
pp. 118-121
Author(s):  
Jin Lin Yang ◽  
Hong Mei Zhang ◽  
Xiu Juan Su ◽  
Shao Jian Ma

In recent years, recovering zinc from zinc calcine with high iron has been a matter of discussion. In this paper, sulfuric acid leaching was carried out to assess the effect of several parameters on zinc and iron extraction in zinc calcine with high iron in which the grade of zinc and iron is 53.90% and 19.38%, respectively. Parameters, such as stirring speed, sulfuric acid concentration, liquid to solid ratio and leaching time, were investigated. The results show that leaching time has done nothing to the leaching rate, but has great influence on leaching efficiency. Liquid to solid ratio and sulfuric acid concentration have significant influence on leaching results, and stirring rate has not obvious influence on leaching results. Under the condition of 120g/L sulfuric acid, 6:1 liquid to solid ratio, 55°C leaching temperature and 120min leaching time, the recovery of zinc and iron is 82.24% and 9.64%, respectively. It is obvious that ZnO in zinc calcine is easy to dissolve in acidity solution, which shown in two aspects: high leaching rate and high leaching speed. ZnO can be dissolved entirely in sufficient sulfuric acid in 10min.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1922
Author(s):  
Anastasiia V. Dubenko ◽  
Mykola V. Nikolenko ◽  
Oleksandr O. Pasenko ◽  
Andrii Kostyniuk ◽  
Blaž Likozar

A new method of altered ilmenite processing has been studied. In this method, sulfuric acid is used as the reaction medium of the process, and fluoride ions are activators of the dissolving process of the rutile part of the ore raw material. The regression model of the sulfate–fluoride leaching process was developed and analyzed by using the response surface method of 23 matrix. The obtained model is adequate and well describes the studied process. The influence of Ti:F molar ratio, temperature, and sulfuric acid concentration on the leaching process are investigated in this work in order to optimize the studied process. It is experimentally proved that leaching at temperatures above 100 °C, at a molar ratio of Ti:F of more than 1:2, and the use of solutions of sulfuric acid with concentrations of more than 85 wt.% is not optimal because the extraction degree of titanium is reduced. The intensification of the process of sulfuric acid leaching by dividing the main stage of chemical dissolution of ilmenite into two stages was proposed. This method allows to leach up to 95.9% of titanium, which is 1.6–1.9 times higher in comparison with the classical technology of leaching altered ilmenite.


2009 ◽  
Vol 71-73 ◽  
pp. 353-356
Author(s):  
Seong Jin Joe ◽  
Tadashi Chida ◽  
Masatoshi Sakoda ◽  
Hidekatsu Nakamura ◽  
Muneyuki Tamura ◽  
...  

This study reports the effect of sulfuric acid concentration on chalcopyrite chemical leaching in very simple H2SO4 solution systems ranging from 23g/L to 30g/L, with 2.5% chalcopyrite concentrate at 30°C. Copper extraction from chalcopyrite increases with an increase in sulfuric acid concentration, e.g. 86%, 90% and 92% after 96 days at 23g/L, 25/L and 27g/L H2SO4 solution respectively. Sulfur element formed on the surface of chalcopyrite was very porous as the result of an electron probe microanalyzer (EPMA). Copper extraction, however, leveled out at 35% after 20 days when the sulfuric acid concentration was higher than 28g/L on 25g/L of chalcopyrite concentrate. Sulfur element was detected by X-ray analysis as only a leaching reaction product. The passivation may be caused by thick elemental surface formed on the surface of chalcopyrite.


2013 ◽  
Vol 634-638 ◽  
pp. 3196-3200
Author(s):  
Kui Liu ◽  
Xue Mei Su

A ferruginous nickel laterite was leached by sulfuric acid at atmospheric pressure. Nickel extraction was largely dependent on sulfuric acid concentration and leaching temperature. Besides these two factors, leaching time and liquid/solid ratio also influenced cobalt extraction significantly. Nickel was easier to be extracted than cobalt. About 95% nickel and cobalt could be extracted when leaching with 5mol/L sulfuric acid for 2h at 100°C, and the acid consumption was 1.417kg H2SO4/kg dry ore.


Sign in / Sign up

Export Citation Format

Share Document