Study on Leaching Zinc Calcine with High Iron

2013 ◽  
Vol 826 ◽  
pp. 118-121
Author(s):  
Jin Lin Yang ◽  
Hong Mei Zhang ◽  
Xiu Juan Su ◽  
Shao Jian Ma

In recent years, recovering zinc from zinc calcine with high iron has been a matter of discussion. In this paper, sulfuric acid leaching was carried out to assess the effect of several parameters on zinc and iron extraction in zinc calcine with high iron in which the grade of zinc and iron is 53.90% and 19.38%, respectively. Parameters, such as stirring speed, sulfuric acid concentration, liquid to solid ratio and leaching time, were investigated. The results show that leaching time has done nothing to the leaching rate, but has great influence on leaching efficiency. Liquid to solid ratio and sulfuric acid concentration have significant influence on leaching results, and stirring rate has not obvious influence on leaching results. Under the condition of 120g/L sulfuric acid, 6:1 liquid to solid ratio, 55°C leaching temperature and 120min leaching time, the recovery of zinc and iron is 82.24% and 9.64%, respectively. It is obvious that ZnO in zinc calcine is easy to dissolve in acidity solution, which shown in two aspects: high leaching rate and high leaching speed. ZnO can be dissolved entirely in sufficient sulfuric acid in 10min.

2013 ◽  
Vol 634-638 ◽  
pp. 3196-3200
Author(s):  
Kui Liu ◽  
Xue Mei Su

A ferruginous nickel laterite was leached by sulfuric acid at atmospheric pressure. Nickel extraction was largely dependent on sulfuric acid concentration and leaching temperature. Besides these two factors, leaching time and liquid/solid ratio also influenced cobalt extraction significantly. Nickel was easier to be extracted than cobalt. About 95% nickel and cobalt could be extracted when leaching with 5mol/L sulfuric acid for 2h at 100°C, and the acid consumption was 1.417kg H2SO4/kg dry ore.


2013 ◽  
Vol 826 ◽  
pp. 122-125 ◽  
Author(s):  
Jin Lin Yang ◽  
Hong Mei Zhang ◽  
Gui Fang Wang ◽  
Shao Jian Ma ◽  
Min Zhang

In this paper, sulfuric acid leaching was carried out to assess the effect of several parameters on metal extraction in a low grade complex gossan ore in which the grade of zinc and iron is 13% and 40.2%, respectively. Parameters, such as sulfuric acid concentration, liquid to solid ratio and leaching temperature, were studied. The results show that the zinc leaching rate is almost 80%, while the iron leaching rate is about 45% used strong acid with 200g/L. It can be seen from the results that sulfuric acid leaching could not effectively recover zinc from gossan ores studied in this paper because of iron dissolving greatly.


2013 ◽  
Vol 813 ◽  
pp. 269-272
Author(s):  
Gui Ming Shi ◽  
Xia Jing Yu

For a nickel oxide ore, 1# ore sample was treated by sulfuric acid leaching and 2# ore sample was treated by ammonium sulfate roasting-sulfuric acid leaching through exploring experiments. The leaching rate of 92.04% with l# nickel oxide ore and the leaching rate of 72.36% with 2# nickel oxide ore were obtained by conducting the conditional experiments of sulfuric acid concentration, leaching time, ammonium sulfate dosage and so on.


Author(s):  
Jihao Guo ◽  
Hongao Xu ◽  
Bo Li ◽  
Yonggang Wei ◽  
Hua Wang

Abstract Multiple purification of zinc sulfate solution is an important process for zinc hydrometallurgy, and large quantities of copper-cadmium residues are generated as byproducts in this process. Copper-cadmium residues contain a large number of valuable metals that must be recovered. A comprehensive extraction process has been proposed using sulfuric acid as the leaching reagent and hydrogen peroxide as the oxidizing reagent. The effects of acid concentration, leaching temperature, leaching time, liquid-to-solid ratio, hydrogen peroxide dosage and stirring speed on the leaching efficiency were investigated. The optimum conditions were determined as an acid concentration of 150 g/L, liquid-to-solid ratio of 4:1, hydrogen peroxide amount of 20 mL, time of 60 min, temperature of 30 °C, particle size of −d75 μm, and agitation rate of 300 r/min. It was concluded that the leaching efficiency of copper and cadmium reached 97%, but because of the existence of zinc sulfide in the residues, a lower leaching efficiency of zinc was obtained. Furthermore, the leaching kinetics of copper was also studied based on the shrinking core model. The activation energy for copper leaching was 5.06 kJ/mol, and the leaching process was controlled by the diffusion through the product layer.


2013 ◽  
Vol 591 ◽  
pp. 122-125
Author(s):  
Li Jiao Yang ◽  
Si Chen ◽  
Yan Zhang ◽  
Nan Chun Chen ◽  
Jun Gao ◽  
...  

Extracting indium from water quenching slag, which contains poor indium, by two process of leaching, the effect of different oxidants and dosages on the leaching rate of indium in water quenching slag were studied. The leaching conditions: temperature 80 °C, leaching time 2 h, the liquid to solid ratio of neutral leaching 8︰1, the liquid to solid ratio of acid leaching 2︰1, initial concentration of sulfuric acid 500 g·L-1, adding different oxidants, the concentration was detected by crystal violet spectrophotometry. Test results showed that the leaching rate of indium was significantly improved by adding hydrogen peroxide and potassium permanganate. Compared with the effect of different oxidants, the effect of potassium permanganate was significantly higher than that of hydrogen peroxide on the leaching rate of indium.


2012 ◽  
Vol 454 ◽  
pp. 329-332 ◽  
Author(s):  
Jin Lin Yang ◽  
Shao Jian Ma ◽  
Wei Mo ◽  
Jin Peng Feng ◽  
Xiu Juan Su ◽  
...  

In this paper, the conventional physical separation method such as flotation, gravity separation, magnetic separation, alkaline leaching and sulfuric acid leaching were studied. The effects of grinding fineness, amount of agent, magnetic intensity, roasting temperature, roasting time, the leaching agent and leaching time on the leaching of zinc were investigated, respectively. The results show that the leaching rate of zinc is below 50% in the conventional alkaline leaching, and the leaching rate of zinc is below 85% and the leaching rate of iron is above 35% in sulfuric acid leaching. Compared with XRD pattern of the raw ore, the different diffraction peaks of smithsonite is off in alkaline leaching products. In sulfuric acid leaching, the different diffraction peaks of smithsonite are off in the leaching products when sulfuric acid concentration is less than 60 g/L. After 60 g/L, the different diffraction peaks of smithsonite and siderite are off in the leaching products.


2013 ◽  
Vol 316-317 ◽  
pp. 882-886
Author(s):  
Wei He ◽  
Guo Hua Ye ◽  
Xiong Tong

Abstract:A new technology of direct acid leaching vanadium without grinding and roasting was put forward, and the effects of leaching factors including dosage of sulfuric acid, type and dosage of assistant leaching agent, leaching time and temperature, liquid-solid ratio on the vanadium leaching rate were systematically investigated. The results show that vanadium leaching rate could be up to 92.58% under the optimal conditions of sulfuric acid dosage of 30%, MnO2 as assistant leaching agent and its dosage of 1.5%, leaching time of 6h, leaching temperature of 90°C, liquid-solid ratio of 1:1, and the leaching performance is perfect. Due to leaving out the high costing grinding system and the complex roasting system, the new technology has advantages in shortening the process, decreasing the cost, avoiding pollution generated by roasting comparing with the traditional technologies, and it can meet the requirement of modern metallurgy very well.


2011 ◽  
Vol 402 ◽  
pp. 266-271
Author(s):  
Hong Sheng Xu ◽  
Chang Wei ◽  
Cun Xiong Li ◽  
Yan Song ◽  
Zhi Gan Deng ◽  
...  

The present work is concerned with the kinetic study of pressure leaching of zinc silicate ore in sulfuric acid solutions. The effects of leaching temperature, particle size, sulfuric acid concentration and agitation speed on the zinc extraction were evaluated. The results obtained show that the zinc extraction increases with increasing sulfuric acid concentration and leaching temperature. The leaching kinetics was analyzed by using a shrinking core model with diffusion control given by: 1-2/3x-(1-x)2/3=Kt, which represented well the experimental data. The apparent activation energy was determined to be 44.56kJ/mol at temperatures ranging between 80 and 140°C.


2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 32-40
Author(s):  
Eko Sulistiyono ◽  
Murni Handayani ◽  
Agus Budi Prasetyo ◽  
Januar Irawan ◽  
Eni Febriana ◽  
...  

Indonesia has very abundant reserves of silica, but progressive studies on the deposition of this material are very few, resulting in limited applications of silica. This work refers to the purification of silica from quartz sand originated from Sukabumi, Indonesia to obtain high-purity silica, which can be applied as important raw materials for special purposes. The aim of our research is to improve low-grade silica from quartz sand by removing impurities, especially aluminum and iron removal, using sulfuric acid leaching. In order to achieve the aim, the effect of reaction time and sulfuric acid concentration on the leaching process was investigated. The effectiveness of sulfuric acid for the impurities removal was observed. The chemical composition of the samples before and after leaching was studied using X-ray fluorescence. The mineralogical analysis of the starting materials and the products was conducted using X-ray diffraction. Microstructure analysis was performed using a scanning electron microscope, and EDS test was used to show the element composition at different points. The experimental results show that the optimum condition of the leaching process occurs at a reaction time of 5 hours with a sulfuric acid concentration of 10 N. The silica levels increase from 93.702 % to 96.438 %. Aluminum and iron impurities reduced from 4.691 % to 2.712 % and from 0.641 % to 0.094 %, respectively. At this optimum point, sulfuric acid is very effective to remove aluminum and iron impurities up to 42 % and 85 %, respectively. The results of this research can be a very significant opportunity to increase the value added of quartz sand from Sukabumi, which can enhance the quality of low-grade silica to provide better raw materials for glass industries.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lijie Chen ◽  
Jiacong Xu ◽  
Xiaoqiang Yu ◽  
Lei Tian ◽  
Ruixiang Wang ◽  
...  

Rare earth element recovery in molten salt electrolysis is approximately between 91 and 93%, whereof 8% is lost in waste molten salt slag. Presently, minimal research has been conducted on the technology for recycling waste rare earth molten salt slag, which is either discarded as industrial garbage or mixed with waste slag into qualified molten salt. The development of a new approach toward the effective treatment of rare earth fluoride molten salt electrolytic slag, which can recycle the remaining rare earth and improve the utilization rate, is essential. Herein, weak magnetic iron separation, sulfuric acid leaching transformation, water leaching, hydrogen fluoride water absorption, and cycle precipitation of rare earth are used to recover rare earth from their fluoride molten salt electrolytic slag, wherein the thermodynamic and kinetic processes of sulfuric acid leaching transformation are emphatically studied. Thermodynamic results show that temperature has a great influence on sulfuric acid leaching. With rising temperature, the equilibrium constant of the reaction gradually increases, and the stable interval of NdF3 decreases, while that of Nd3+ increases, indicating that high temperature is conducive to the sulfuric acid leaching process, whereof the kinetic results reveal that the activation energy E of Nd transformation is 41.57 kJ/mol, which indicates that the sulfuric acid leaching process is controlled by interfacial chemical reaction. According to the Nd transformation rate equation in the sulfuric acid leaching process of rare earth fluoride molten salt electrolytic slag under different particle size conditions, it is determinable that with the decrease of particle size, the reaction rate increases accordingly, while strengthening the leaching kinetic process. According to the equation of Nd transformation rate in the sulfuric acid leaching process under different sulfuric acid concentration conditions, the reaction series of sulfuric acid concentration K = 6.4, which is greater than 1, indicating that increasing sulfuric acid concentration can change the kinetic-control region and strengthen the kinetic process.


Sign in / Sign up

Export Citation Format

Share Document