Effect of Sulfuric Acid Concentration on Chalcopyrite Concentrate Chemical Leaching

2009 ◽  
Vol 71-73 ◽  
pp. 353-356
Author(s):  
Seong Jin Joe ◽  
Tadashi Chida ◽  
Masatoshi Sakoda ◽  
Hidekatsu Nakamura ◽  
Muneyuki Tamura ◽  
...  

This study reports the effect of sulfuric acid concentration on chalcopyrite chemical leaching in very simple H2SO4 solution systems ranging from 23g/L to 30g/L, with 2.5% chalcopyrite concentrate at 30°C. Copper extraction from chalcopyrite increases with an increase in sulfuric acid concentration, e.g. 86%, 90% and 92% after 96 days at 23g/L, 25/L and 27g/L H2SO4 solution respectively. Sulfur element formed on the surface of chalcopyrite was very porous as the result of an electron probe microanalyzer (EPMA). Copper extraction, however, leveled out at 35% after 20 days when the sulfuric acid concentration was higher than 28g/L on 25g/L of chalcopyrite concentrate. Sulfur element was detected by X-ray analysis as only a leaching reaction product. The passivation may be caused by thick elemental surface formed on the surface of chalcopyrite.

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 189 ◽  
Author(s):  
Josué Cháidez ◽  
José Parga ◽  
Jesús Valenzuela ◽  
Raúl Carrillo ◽  
Isaías Almaguer

This article presents a copper leaching process from chalcopyrite concentrates using a low-pressure reactor. The experiments were carried out in a 30 L batch reactor at an oxygen pressure of 1 kg/cm2 and solid concentration of 100 g/L. The temperature, particle size and initial acid concentration were varied based on a Taguchi L9 experimental design. The initial and final samples of the study were characterized by chemical analysis, X-ray diffraction and particle size distribution. The mass balance showed that 98% of copper was extracted from the chalcopyrite concentrate in 3 h under the following experimental conditions: 130 g/L of initial sulfuric acid concentration, temperature of 100 °C, oxygen pressure of 1 kg/cm2, solid concentration of 100 g/L and particle size of −105 + 75 μm. The ANOVA demonstrated that temperature had the greatest influence on copper extraction. The activation energy was 61.93 kJ/mol. The best fit to a linear correlation was the chemical reaction equation that controls the kinetics for the leaching copper from chalcopyrite. The images obtained by SEM showed evidence of shrinking in the core model with the formation of a porous elemental sulfur product layer.


2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 32-40
Author(s):  
Eko Sulistiyono ◽  
Murni Handayani ◽  
Agus Budi Prasetyo ◽  
Januar Irawan ◽  
Eni Febriana ◽  
...  

Indonesia has very abundant reserves of silica, but progressive studies on the deposition of this material are very few, resulting in limited applications of silica. This work refers to the purification of silica from quartz sand originated from Sukabumi, Indonesia to obtain high-purity silica, which can be applied as important raw materials for special purposes. The aim of our research is to improve low-grade silica from quartz sand by removing impurities, especially aluminum and iron removal, using sulfuric acid leaching. In order to achieve the aim, the effect of reaction time and sulfuric acid concentration on the leaching process was investigated. The effectiveness of sulfuric acid for the impurities removal was observed. The chemical composition of the samples before and after leaching was studied using X-ray fluorescence. The mineralogical analysis of the starting materials and the products was conducted using X-ray diffraction. Microstructure analysis was performed using a scanning electron microscope, and EDS test was used to show the element composition at different points. The experimental results show that the optimum condition of the leaching process occurs at a reaction time of 5 hours with a sulfuric acid concentration of 10 N. The silica levels increase from 93.702 % to 96.438 %. Aluminum and iron impurities reduced from 4.691 % to 2.712 % and from 0.641 % to 0.094 %, respectively. At this optimum point, sulfuric acid is very effective to remove aluminum and iron impurities up to 42 % and 85 %, respectively. The results of this research can be a very significant opportunity to increase the value added of quartz sand from Sukabumi, which can enhance the quality of low-grade silica to provide better raw materials for glass industries.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 477
Author(s):  
Kevin Pérez ◽  
Norman Toro ◽  
Manuel Saldaña ◽  
Eleazar Salinas-Rodríguez ◽  
Pedro Robles ◽  
...  

Covellite is a secondary copper sulfide, and it is not abundant. There are few investigations on this mineral in spite of it being formed during the leaching of chalcocite or digenite; the other investigations on covellite are with the use of mineraloids, copper concentrates, and synthetic covellite. The present investigation applied the surface optimization methodology using a central composite face design to evaluate the effect of leaching time, chloride concentration, and sulfuric acid concentration on the level of copper extraction from covellite (84.3% of purity). Copper is dissolved from a sample of pure covellite without the application of temperature or pressure; the importance of its purity is that the behavior of the parameters is analyzed, isolating the impurities that affect leaching. The chloride came from NaCl, and it was effectuated in a size range from –150 to +106 μm. An ANOVA indicated that the leaching time and chloride concentration have the most significant influence, while the copper extraction was independent of sulfuric acid concentration. The experimental data were described by a highly representative quadratic model obtained by linear regression (R2 = 0.99).


2021 ◽  
Vol 6 (1) ◽  
pp. 156-164
Author(s):  
Jessica E. Guzmán-Pérez ◽  
◽  
Oscar J. Salinas-Luna ◽  
Ernesto Favela-Torres ◽  
Nohemi López-Ramírez ◽  
...  

Water hyacinth (Eichhornia crassipes) is considered a pernicious herb in many parts of the world due to its rapid growth. However, for its high content of cellulose and hemicellulose, it could be considered as raw material to produce fermentable sugars. In this work, the effect of sulfuric acid concentration by thermochemical pretreatment and enzymatic hydrolysis on the release of sugars from water hyacinth was evaluated. Initially, the effect of the sulfuric acid concentration from 1.5 to 9% at 120 ºC was evaluated. With 1.5%, the release of reducing sugars was 160 milligrams of reducing sugars per gram of dry matter (mg red-sug/g dm). After the thermochemical pretreatment, the enzymatic hydrolysis with the cellulase complex (NS22086) allowed obtaining a reducing sugars concentration up to 317 mg red-sug/g dm. These thermochemical and enzymatic approaches to recover reducing sugars from water hyacinth is promising and should be evaluated for bioprocess using reducing sugars as the main source of carbon, such as bioethanol production.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 565 ◽  
Author(s):  
Norman Toro ◽  
Nelson Herrera ◽  
Jonathan Castillo ◽  
Cynthia Torres ◽  
Rossana Sepúlveda

In this study, the surface optimization methodology was used to assess the effect of three independent variables—time, particle size and sulfuric acid concentration—on Mn extraction from marine nodules during leaching with H2SO4 in the presence of foundry slag. The effect of the MnO2/Fe ratio and particle size (MnO2) was also investigated. The maximum Mn extraction rate was obtained when a MnO2 to Fe molar ratio of 0.5, 1 M of H2SO4, −320 + 400 Tyler mesh (−47 + 38 μm) nodule particle size and a leaching time of 30 min were used.


2013 ◽  
Vol 699 ◽  
pp. 28-33 ◽  
Author(s):  
Yun Fei Long ◽  
Jing Su ◽  
Xian Jia Ye ◽  
Hai Feng Su ◽  
Yan Xuan Wen

Bagasse, a fibrous residue from sugarcane juice extraction, was used as a reducing agent to roast low-grade pyrolusite in N2. The roasted ore was further leached using sulfuric acid, to convert manganese oxide in the ore to manganese sulfate. The effects of weight ratio of bagasse to manganese ore, roasting temperature, roasting time, leaching temperature, leaching time, stirring speed and sulfuric acid concentration on the leaching recovery of manganese were investigated. Optimal conditions were determined to be a bagasse to manganese ore weight ratio of 0.8:10, roasting temperature of 500°C for 40 min, leaching stirring speed of 100 rpm, sulfuric acid concentration of 3 mol•L-1 and leaching temperature of 50°C for 40 min. The leaching recovery rate of manganese was up to 97.8% at the optimal conditions.


2017 ◽  
Author(s):  
Runlong Cai ◽  
Dongsen Yang ◽  
Yueyun Fu ◽  
Xing Wang ◽  
Xiaoxiao Li ◽  
...  

Abstract. The predominating role of aerosol Fuchs surface area, AFuchs, in determining the occurrence of new particle formation (NPF) events in Beijing was elucidated in this study. Analysis was based on a field campaign from March 12th to April 6th, 2016, in Beijing, during which aerosol size distributions down to ~ 1 nm and sulfuric acid concentration were simultaneously monitored. The 26 days were classified into 11 typical NPF days, 2 undefined days, and 13 non-event days. A dimensionless factor, LΓ, characterizing the relative ratio of the coagulation scavenging rate over the condensational growth rate and predicting whether or not a NPF event would occur (Kuang et al., 2010), was applied. The three parameters determining LΓ are sulfuric acid concentration, the growth enhancement factor characterizing contribution of other gaseous precursors to particle growth, Γ, and AFuchs. Different from other atmospheric environment such as in Boulder and Hyytiälä, the variations of daily maximum sulfuric acid concentration and Γ in Beijing are in a narrow range with geometric standard deviations of 1.40 and 1.31, respectively. Positive correlation was found between estimated new particle formation rate, J1.5, and sulfuric acid concentration with a mean fitted exponent of 2.4. However, sulfuric acid concentration on NPF days is not significantly higher than that on non-event days. Instead, AFuchs varies greatly among days in Beijing with a geometric standard deviation of 2.56, while it is relatively stable at other locations such as Tecamac, Atlanta, and Boulder. Good correlation was found between AFuchs and LΓ in Beijing (R2 = 0.88). It appears that the abundance of gaseous precursors such as sulfuric acid in Beijing is high enough to have nucleation, however, it is AFuchs that determines the occurrence of NPF event in Beijing. 10 in 11 NPF events occurred when AFuchs is smaller than 200 μm2/cm3, and the NPF event was suppressed due to coagulation scavenging when AFuchs is larger than 200 μm2/cm3. Measured AFuchs is in good correlation with PM2.5 mass concentration (R2 = 0.85) since AFuchs in Beijing is mainly determined by particles in the size range of 50–500 nm that also contribute to PM2.5 mass concentration.


Sign in / Sign up

Export Citation Format

Share Document