scholarly journals Numerical Algorithms for Simulation of a Fluid-Filed Fracture Evolution in a Poroelastic Medium

2021 ◽  
pp. 24-35
Author(s):  
V. E Borisov ◽  
A. V Ivanov ◽  
B. V Kritsky ◽  
E. B Savenkov

The paper deals with the computational framework for the numerical simulation of the three dimensional fluid-filled fracture evolution in a poroelastic medium. The model consists of several groups of equations including the Biot poroelastic model to describe a bulk medium behavior, Reynold’s lubrication equations to describe a flow inside fracture and corresponding bulk/fracture interface conditions. The geometric model of the fracture assumes that it is described as an arbitrary sufficiently smooth surface with a boundary. Main attention is paid to describing numerical algorithms for particular problems (poroelasticity, fracture fluid flow, fracture evolution) as well as an algorithm for the coupled problem solution. An implicit fracture mid-surface representation approach based on the closest point projection operator is a particular feature of the proposed algorithms. Such a representation is used to describe the fracture mid-surface in the poroelastic solver, Reynold’s lubrication equation solver and for simulation of fracture evolutions. The poroelastic solver is based on a special variant of X-FEM algorithms, which uses the closest point representation of the fracture. To solve Reynold’s lubrication equations, which model the fluid flow in fracture, a finite element version of the closet point projection method for PDEs surface is used. As a result, the algorithm for the coupled problem is purely Eulerian and uses the same finite element mesh to solve equations defined in the bulk and on the fracture mid-surface. Finally, we present results of the numerical simulations which demonstrate possibilities of the proposed numerical techniques, in particular, a problem in a media with a heterogeneous distribution of transport, elastic and toughness properties.

Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 213
Author(s):  
Elena Benvenuti ◽  
Giulia Maurillo

The study of the seismogenic mechanical effects induced by oil & gas activities is a socially impacting issue of environmental engineering as well as a challenging task in computational geomechanics. It requires the solution of a coupled problem governed by poroelastic and fluid flow equations in a faulted domain in the presence of in situ stress fields. As a viable alternative to state-of-the-art academical computational models, the present study contributes a simplified methodology based on a commercial Finite Element multiphysics software. The focus is on the evaluation of the link between the oil & gas activities of the Cavone oilfield reservoir, located in North Italy and adjacent to the Mirandola fault, and the recent seismic sequence that struck Emilia in May 2012. An operational coupled fluid-geomechanical procedure is developed where the Cavone reservoir is subjected to the typical in situ stresses, and the nearby Mirandola fault is modelled as an impervious thin layer.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2012 ◽  
Vol 268-270 ◽  
pp. 916-920
Author(s):  
Zheng Shun Wang ◽  
Wen Jia Han

In this thesis, the process of electromagnetic drying cylinder was analyzed creating by the dryer finite element model using ANSYS. The conduction thermal analysis, the applied load and solved showed the results of three major components. Which create a finite element model of the process, mainly the preprocessor using ANSYS software to create or import geometric models from other software applications, and then add the material properties. The last of the geometric model meshing and solving process need to enter solvers according to the actual situation. The setting is applied to the thermal load and conditions. Then it is proceed to the finite element solution operator. It final usually the Post 1, or Post2 view results, and based on our experience to judge correctly


2018 ◽  
Vol 934 ◽  
pp. 24-29
Author(s):  
Prapasiri Pongprayoon ◽  
Attaphon Chaimanatsakun

Graphene nanopore has been widely employed in nanofilter or nanopore devices due to its outstanding properties. The understanding of its mechanical properties at nanoscale is crucial for device improvement. In this work, the mechanical properties of graphene nanopore is thus investigated using atomistic finite element method (AFEM). Four graphene models with different pore shapes (circular (CR), horizontal rectangle (RH), and vertical rectangle (RV)) in sub-nm size which could be successfully fabricated experimentally have been studied here. The force normal to a pore surface is applied to mimic the impact force due to a fluid flow. Increasing pore size results in the reduction in its strength. Comparing among different pore shapes with comparable sizes, the order of pore strength is CR>RH>RV>SQ. In addition, we observe that the direction of pore alignment and geometries of pore edge also play a key role in mechanical strength of nanopores.


Sign in / Sign up

Export Citation Format

Share Document