scholarly journals Method for Reliable Shortest Path Determination in Stochastic Networks using Parametrically Defined Stable Probability Distributions

2019 ◽  
Vol 18 (3) ◽  
pp. 558-582
Author(s):  
Anton Agafonov ◽  
Vladislav Myasnikov

An increase in the number of vehicles, especially in large cities, and inability of the existing road infrastructure to distribute transport flows, leads to a higher congestion level in transport networks. This problem makes the solution to navigational problems more and more important. Despite the popularity of these tasks, many existing commercial systems find a route in deterministic networks, not taking into account the time-dependent and stochastic properties of traffic flows, i.e. travel time of road links is considered as constant. This paper addresses the reliable routing problem in stochastic networks using actual information of the traffic flow parameters. We consider the following optimality criterion: maximization of the probability of arriving on time at a destination given a departure time and a time budget. The reliable shortest path takes into account the variance of the travel time of the road network segments, which makes it more applicable for solving routing problems in transport networks compared to standard shortest path search algorithms that take into account only the average travel time of network segments. To describe the travel time of the road network segments, it is proposed to use parametrically defined stable Levy probability distributions. The use of stable distributions allows replacing the operation of calculating convolution to determine the reliability of the path to recalculating the parameters of the distributions density, which significantly reduces the computational time of the algorithm. The proposed method gives a solution in the form of a decision, i.e. the route proposed in the solution is not fixed in advance, but adaptively changes depending on changes in the real state of the network. An experimental analysis of the algorithm carried out on a large-scale transport network of Samara, Russia, showed that the presented algorithm can significantly reduce the computational time of the reliable shortest path algorithm with a slight increase in travel time.


2018 ◽  
Vol 7 (12) ◽  
pp. 472 ◽  
Author(s):  
Bo Wan ◽  
Lin Yang ◽  
Shunping Zhou ◽  
Run Wang ◽  
Dezhi Wang ◽  
...  

The road-network matching method is an effective tool for map integration, fusion, and update. Due to the complexity of road networks in the real world, matching methods often contain a series of complicated processes to identify homonymous roads and deal with their intricate relationship. However, traditional road-network matching algorithms, which are mainly central processing unit (CPU)-based approaches, may have performance bottleneck problems when facing big data. We developed a particle-swarm optimization (PSO)-based parallel road-network matching method on graphics-processing unit (GPU). Based on the characteristics of the two main stages (similarity computation and matching-relationship identification), data-partition and task-partition strategies were utilized, respectively, to fully use GPU threads. Experiments were conducted on datasets with 14 different scales. Results indicate that the parallel PSO-based matching algorithm (PSOM) could correctly identify most matching relationships with an average accuracy of 84.44%, which was at the same level as the accuracy of a benchmark—the probability-relaxation-matching (PRM) method. The PSOM approach significantly reduced the road-network matching time in dealing with large amounts of data in comparison with the PRM method. This paper provides a common parallel algorithm framework for road-network matching algorithms and contributes to integration and update of large-scale road-networks.



2022 ◽  
Vol 13 (2) ◽  
pp. 1-25
Author(s):  
Bin Lu ◽  
Xiaoying Gan ◽  
Haiming Jin ◽  
Luoyi Fu ◽  
Xinbing Wang ◽  
...  

Urban traffic flow forecasting is a critical issue in intelligent transportation systems. Due to the complexity and uncertainty of urban road conditions, how to capture the dynamic spatiotemporal correlation and make accurate predictions is very challenging. In most of existing works, urban road network is often modeled as a fixed graph based on local proximity. However, such modeling is not sufficient to describe the dynamics of the road network and capture the global contextual information. In this paper, we consider constructing the road network as a dynamic weighted graph through attention mechanism. Furthermore, we propose to seek both spatial neighbors and semantic neighbors to make more connections between road nodes. We propose a novel Spatiotemporal Adaptive Gated Graph Convolution Network ( STAG-GCN ) to predict traffic conditions for several time steps ahead. STAG-GCN mainly consists of two major components: (1) multivariate self-attention Temporal Convolution Network ( TCN ) is utilized to capture local and long-range temporal dependencies across recent, daily-periodic and weekly-periodic observations; (2) mix-hop AG-GCN extracts selective spatial and semantic dependencies within multi-layer stacking through adaptive graph gating mechanism and mix-hop propagation mechanism. The output of different components are weighted fused to generate the final prediction results. Extensive experiments on two real-world large scale urban traffic dataset have verified the effectiveness, and the multi-step forecasting performance of our proposed models outperforms the state-of-the-art baselines.



2018 ◽  
Vol 115 (50) ◽  
pp. 12654-12661 ◽  
Author(s):  
Luis E. Olmos ◽  
Serdar Çolak ◽  
Sajjad Shafiei ◽  
Meead Saberi ◽  
Marta C. González

Stories of mega-jams that last tens of hours or even days appear not only in fiction but also in reality. In this context, it is important to characterize the collapse of the network, defined as the transition from a characteristic travel time to orders of magnitude longer for the same distance traveled. In this multicity study, we unravel this complex phenomenon under various conditions of demand and translate it to the travel time of the individual drivers. First, we start with the current conditions, showing that there is a characteristic time τ that takes a representative group of commuters to arrive at their destinations once their maximum density has been reached. While this time differs from city to city, it can be explained by Γ, defined as the ratio of the vehicle miles traveled to the total vehicle distance the road network can support per hour. Modifying Γ can improve τ and directly inform planning and infrastructure interventions. In this study we focus on measuring the vulnerability of the system by increasing the volume of cars in the network, keeping the road capacity and the empirical spatial dynamics from origins to destinations unchanged. We identify three states of urban traffic, separated by two distinctive transitions. The first one describes the appearance of the first bottlenecks and the second one the collapse of the system. This collapse is marked by a given number of commuters in each city and it is formally characterized by a nonequilibrium phase transition.



Author(s):  
Qibin Zhou ◽  
Qingang Su ◽  
Dingyu Yang

Real-time traffic estimation focuses on predicting the travel time of one travel path, which is capable of helping drivers selecting an appropriate or favor path. Statistical analysis or neural network approaches have been explored to predict the travel time on a massive volume of traffic data. These methods need to be updated when the traffic varies frequently, which incurs tremendous overhead. We build a system RealTER⁢e⁢a⁢l⁢T⁢E, implemented on a popular and open source streaming system StormS⁢t⁢o⁢r⁢m to quickly deal with high speed trajectory data. In RealTER⁢e⁢a⁢l⁢T⁢E, we propose a locality-sensitive partition and deployment algorithm for a large road network. A histogram estimation approach is adopted to predict the traffic. This approach is general and able to be incremental updated in parallel. Extensive experiments are conducted on six real road networks and the results illustrate RealTE achieves higher throughput and lower prediction error than existing methods. The runtime of a traffic estimation is less than 11 seconds over a large road network and it takes only 619619 microseconds for model updates.



Author(s):  
Mourad Guettiche ◽  
Hamamache Kheddouci

PurposeThe purpose of this paper is to study a multiple-origin-multiple-destination variant of dynamic critical nodes detection problem (DCNDP) and dynamic critical links detection problem (DCLDP) in stochastic networks. DCNDP and DCLDP consist of identifying the subset of nodes and links, respectively, whose deletion maximizes the stochastic shortest paths between all origins–destinations pairs, in the graph modeling the transport network. The identification of such nodes (or links) helps to better control the road traffic and predict the necessary measures to avoid congestion.Design/methodology/approachA Markovian decision process is used to model the shortest path problem under dynamic traffic conditions. Effective algorithms to determine the critical nodes (links) while considering the dynamicity of the traffic network are provided. Also, sensitivity analysis toward capacity reduction for critical links is studied. Moreover, the complexity of the underlying algorithms is analyzed and the computational efficiency resulting from the decomposition operation of the network into communities is highlighted.FindingsThe numerical results demonstrate that the use of dynamic shortest path (time dependency) as a metric has a significant impact on the identification of critical nodes/links and the experiments conducted on real world networks highlight the importance of sensitive links to dynamically detect critical links and elaborate smart transport plans.Research limitations/implicationsThe research in this paper also revealed several challenges, which call for future investigations. First, the authors have restricted our experimentation to a small network where the only focus is on the model behavior, in the absence of historical data. The authors intend to extend this study to very large network using real data. Second, the authors have considered only congestion to assess network’s criticality; future research on this topic may include other factors, mainly vulnerability.Practical implicationsTaking into consideration the dynamic and stochastic nature in problem modeling enables to be effective tools for real-time control of transportation networks. This leads to design optimized smart transport plans particularly in disaster management, to improve the emergency evacuation effeciency.Originality/valueThe paper provides a novel approach to solve critical nodes/links detection problems. In contrast to the majority of research works in the literature, the proposed model considers dynamicity and betweenness while taking into account the stochastic aspect of transport networks. This enables the approach to guide the traffic and analyze transport networks mainly under disaster conditions in which networks become highly dynamic.



2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yunpeng Wang ◽  
Yuqin Feng ◽  
Wenxiang Li ◽  
William Case Fulcher ◽  
Li Zhang

We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.



1989 ◽  
Vol 3 (3) ◽  
pp. 435-451
Author(s):  
Bajis Dodin

Given a stochastic activity network in which the length of some or all of the arcs are random variables with known probability distributions. This paper concentrates on identifying the shortest path and the M shortest paths in the network and on using the M paths to identify surrogate stochastic networks which are amenable for deriving analytical solutions. First, it identifies the M shortest paths using a certain form of stochastic dominance. Second, it identifies the M shortest paths by applying the deterministic methods to the network resulting from replacing the random length of every arc by its mean value. The two sets of the M paths are compared with those obtained by Monte Carlo sampling. Finally, the paper investigates how the distributional properties of the shortest path in the surrogate network compare with those of the shortest path in the original stochastic network.



2014 ◽  
Vol 687-691 ◽  
pp. 3675-3678
Author(s):  
Guo Liang Tang ◽  
Zhi Jing Liu ◽  
Jing Xiong

As far as the large-scale video surveillance sensor network in urban road and highway, the relay-surveillance on abnormal behavior or particular targets is one of the hot focuses of in recent researches, while the establishment of adjacency relationship of the neighbor sensor nodes is the basis of the sensor scheduling for the relay-surveillance. The topology of a road network is generated according to the road information, which has already existed in the geographic information systems (GIS) regarding the road intersections as nodes and the section between the two intersections as the edge. The initial topology of relay-adjacency relationship between sensors is built by that each video sensor is deployed at the each intersection and the section of the each two intersections is regarded as the basis of adjacency between the each two sensors. When a new video sensor is to be deployed in a section of a road, the related deployed sensors in same section are searched by using the spatial index of GIS based on its GPS information, and then the adjacency relationship between the new sensor and the related ones is generated by using the sorting algorithm according to their GPS information. By using the road network information that has already existed in the GIS system, the algorithm on establishing the relay-adjacency relationship of video sensors is simple and simpler to implement, and it can be used in the construction of sensor relay-surveillance topology such as automatic real-time tracking on abnormal behavior or the analysis of the escape routes and so on in city roads, highway, smarter cities and smarter planet.



2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xinhua Mao ◽  
Jibiao Zhou ◽  
Changwei Yuan ◽  
Dan Liu

This work proposes a framework for the optimization of postdisaster road network restoration strategies from a perspective of resilience. The network performance is evaluated by the total system travel time (TSTT). After the implementation of a postdisaster restoration schedule, the network flows in a certain period of days are on a disequilibrium state; thus, a link-based day-to-day traffic assignment model is employed to compute TSTT and simulate the traffic evolution. Two indicators are developed to assess the road network resilience, i.e., the resilience of performance loss and the resilience of recovery rapidity. The former is calculated based on TSTT, and the latter is computed according to the restoration makespan. Then, we formulate the restoration optimization problem as a resilience-based bi-objective mixed integer programming model aiming to maximize the network resilience. Due to the NP-hardness of the model, a genetic algorithm is developed to solve the model. Finally, a case study is conducted to demonstrate the effectiveness of the proposed method. The effects of key parameters including the number of work crews, travelers’ sensitivity to travel time, availability of budget, and decision makers’ preference on the values of the two objectives are investigated as well.



Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4145
Author(s):  
Mariusz Kiec ◽  
Carmelo D’Agostino ◽  
Sylwia Pazdan

The Travel Time Information System (TTIS) is an Intelligent Traffic Control System installed in Poland. As is common, travel time is the only factor in the decision about rerouting traffic, while a route recommendation may consider multiple criteria, including road safety. The aim of the paper is to analyze the safety level of the entire road network when traffic is rerouted on paths with different road categories, intersection types, road environments, and densities of access points. Furthermore, a comparison between traffic operation and road safety performance was carried out, considering travel time and delay, and we predicted the number of crashes for each possible route. The results of the present study allow for maximizing safety or traffic operation characteristics, providing an effective tool in the management of the rural road system. The paper provides a methodology that can be transferred to other TTISs for real-time management of the road network.



Sign in / Sign up

Export Citation Format

Share Document