scholarly journals IMPROVING ALGORITHM OF DETERMINING THE COORDINATES OF THE VERTICES OF THE POLYGON TO INVERT MAGNETIC ANOMALIES OF TWO-DIMENSIONAL BASEMENT STRUCTURES IN SPACE DOMAIN

2018 ◽  
Vol 18 (3) ◽  
pp. 312-322
Author(s):  
Nguyen Thi Thu Hang ◽  
Pham Thanh Luan ◽  
Do Duc Thanh ◽  
Le Huy Minh

In this paper, we present an improved algorithm based on Murthy and Rao’s algorithm to invert magnetic anomalies of two-dimensional basement structures. Here, the magnetic basement interface is approximated by a 2N-sided polygon with assumption that the bottom of the basement is the Curie surface. The algorithm is built in Matlab environment. The model testing shows that the proposed method can perform computations with fast and stable convergence rate. The obtained result also coincide well with the actual model depth. The practical applicability of the method is also demonstrated by interpreting three magnetic profiles in the southeast part of the continental shelf of Vietnam.

2019 ◽  
Vol 41 (1) ◽  
pp. 69-80
Author(s):  
Nguyen Thi Thu Hang ◽  
Erdinc Oksum ◽  
Le Huy Minh ◽  
Do Duc Thanh

The paper presents an improved algorithm based on Bhaskara Rao and Ramesh Babu’s algorithm to invert magnetic anomalies of three-dimensional basement structures. The magnetic basement is approximated by an ensemble of juxtaposed vertical prisms whose bottom surface coincides with Curie surface with the known depth. The computer program operating with the proposed algorithm is built in Matlab environment. Test applications show that the proposed method can perform computations with fast and stable convergence rate where the results also coincide well with the actual model structure. The effectiveness of the method is demonstrated by inverting magnetic anomalies of the southeast part of Vietnam continental shelf. The calculated magnetic basement relief of the study area provides useful additional information for studies in the aim of dealing with the geological structure of the area.References Beiki M., 2010. Analytic signals of gravity gradient tensor and their application to estimate source location, Geophysics, 75(6), i59–i74.Bui C.Q. (chief author), Le T., Tran T. D., Nguyen T. H., Phi T.T., 2007. Map of deep structure of the Earth’s crust, Atlas of the characteristics of natural conditions and environment in Vietnam’s waters and adjacent region. Publisher of Science and Technology, Ha Noi. Do D.T., Nguyen T.T.H., 2011. Atempt the improvement of inversion of magnetic anomalies of two dimensional polygonal cross sections to determine the depth of magnetic basement in some data profile of middle off shelf of Vietnam. Journal of Science and Technology, Vietnam Academy of Science and Technology, 49(2), 125–132.Do D.T., 2013. Study for application of 3D magnetic and gravity method to determine density contribution of basement rock and depth of magnetic basement on Vietnam’s shelf for oil research and prospecting Vietnam National University, Hanoi, Project code QG-11-04. Keating P. and Pilkington M., 2000, Euler deconvolution of the analytic signal, 62nd Annual International Meeting, EAGE, Session P0193.Keating P., Zerbo L., 1996. An improved technique for reduction to the pole at low latitudes, Geophysics, 61, 131–137.Le H.M., Luu V.H., 2003. Preliminary interpretation of the magnetic anomalies of the Eastern Vietnam sea and adiacent regions. J.  Sci. of the Earth, 25(2), 173–181. Mai T.T., Pham V.T., Dang V.B., Le D.B., Nguyen B., Le V.D., 2011. Characteristics of Pliocene - Quaternary geology and Geoengineering in the Center and Southeast parts of Continental Shelf of Vietnam. J.  Sci.  of the Earth, 33(2), 109-118.Mushayandebvu M.F., Lesur V., Reid A.B., Fairhead J.D., 2004. Grid Euler deconvolution with constraints for 2D structures, Geophysics, 69, 489–496.Nguyen N.T., Bui V.N., Nguyen T.T.H., Than D.L., 2014a. Application of power density spectrum of magnetic anomaly to estimate the structure of magnetic layer of the earth crust in the Bac Bo gulf. Journal of Marine Science and Technology, 14(4A), 137–148.Nguyen N.T., Bui V.N., Nguyen T.T.H., 2014b. Determining the depth to the magnetic basementand fault systems in Tu Chinh - Vung May area  by magnetic data interpretation. Journal of Marine Science and Technology, 14(4A), 16–25.Nguyen T.T.H., Pham T.L., Do D.T., Le H.M., 2018. Improving algorithm of determining the coordinates of the vertices of the polygon to invert magnetic anomalies of two-dimensional basement structures in space domain, Journal of Marine Science and Technology (preparing to print).Parker R.L., 1973. The rapid calculation of potential anomalies, Geophys. J. Roy. Astron. Soc, 31, 447–455. Pilkington M., Gregotski M.E., Todoeschuck J.P., 1994. Using fractal crustal magnetization models in magnetic interpretation, Geophysical Prospecting, 42, 677–692.Pilkington M., 2006. Joint inversion of gravity and magnetic data for two-layer models, Geophysics, 71, L35–L42.Rao D.B., Babu N.R., 1993. A fortran 77 computer program for three dimensional inversion of magnetic anomalies resulting from multiple prismatic bodies, Computer & Geosciences, 19(8), 781–801.Tanaka A., Okubo Y., Matsubayashi O., 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonic Pphysics, 306, 461–470.Thompson D.T., 1982. EULDTH – A new technique for marking computer-assisted depth estimates from magnetic data, Geophysics, 47, 31–37.Vo T.S., Le H.M., Luu V.H., 2005. Determining the horizontal position and depth of the density discontinuties in Red River Delta by using the vertical derivative and Euler deconvolution for the gravity anomaly data, Vietnam. Journal of Geology, Series A, 287(3–4), 39–52.  Werner S., 1955. Interpretation of magnetic anomalies of sheet-like bodies, Sveriges Geologiska Undersokning, Series C, Arsbok, 43, 6.Xu S.Z., 2006. The integral-iteration method for continuation of potential fields, Chinese journal of geophysics (in Chinese), 49(4), 1176–1182.Zhang C., Huang D.N., Zhang K., Pu Y.T., Yu P., 2016. Magnetic interface forward and inversion method based on Padé approximation, Applied Geophysics, 13(4), 712–720.CCOP, 1996. Magnetic anomaly map of East Asia, scale 1:4.000.000, Geological survey of Japan and Committee for co-ordination of joint prospecting for mineral resources in asian offshore areas.


Geophysics ◽  
1982 ◽  
Vol 47 (6) ◽  
pp. 926-931 ◽  
Author(s):  
H. V. Ram Babu ◽  
A. S. Subrahmanyam ◽  
D. Atchuta Rao

Magnetic anomalies in vertical and horizontal components, when plotted one against the other in polar form, result in a curve called the relation figure (Werner, 1953). In this paper, a comparative study of the relation figures of magnetic anomalies due to two‐dimensional (2-D) dike and vertical step models is made. The relation figures for these two models are found to be ellipses with different properties. The tangent at the origin to the ellipse is parallel to the major axis of the ellipse for the dike model, whereas it is perpendicular to the major axis for the vertical step. This property may be used to distinguish whether the source is a dike or a vertical step. For both of the models, the angle made by the axis of symmetry of the ellipse with the coordinate axis is equal to θ, the combined magnetic angle. The ratio between the lengths of the major and minor axes of the ellipse is directly related to the width‐to‐depth ratio of the dike or the bottom‐to‐top depth ratio of the vertical step. A few characteristic points defined on the ellipse are used to evaluate the body parameters. The major portion of the ellipse is obtained in the close vicinity of the source. Because of symmetry, the ellipse may be extrapolated easily outside the data length, and hence the effect of noise caused by adjacent objects is kept at a minimum.


2020 ◽  
Vol 134 ◽  
pp. 104347 ◽  
Author(s):  
Luan Thanh Pham ◽  
Erdinc Oksum ◽  
David Gómez-Ortiz ◽  
Thanh Duc Do

1970 ◽  
Vol 27 (10) ◽  
pp. 1701-1728 ◽  
Author(s):  
G. F. D. Duff

A near-resonant mode of oscillation extending to the continental shelf in the Gulf of Maine is shown to be a contributing factor in the extreme high M2 tidal ranges in the Bay of Fundy.The effect on the M2 tidal regime of a double barrier at Cape Chignecto is studied by two methods. A one-dimensional simple harmonic model shows the effect of placing the matching boundary at any intermediate position and defines a probable zone of values for the barrier amplitude. A two-dimensional calculation covering the entire resonant region gives an estimated amplitude reduction of 34% at the Cape Chignecto barrier site.


Geophysics ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 366-369 ◽  
Author(s):  
Aivars Celmins

On page 748 of the above named paper, Affleck (1958) mentions an interesting behavior of magnetic anomalies which are caused by homogeneous magnetized two‐dimensional bodies. He states that in these cases the airborne magnetometer anomaly can be treated as either the vertical or horizontal component anomaly if the true magnetization is replaced by a pseudo‐magnetization of other direction and intensity. It may be of some interest to formulate this behavior more precisely, so much the more as the interdependence between the magnetization directions and the direction of a normal magnetic field can be expressed by a rather simple formula.


Sign in / Sign up

Export Citation Format

Share Document