scholarly journals EFFECT OF ORGANIC LOADING RATE ON SIMULTANEOUS REMOVAL OF NITROGEN AND PHOSPHORUS FROM AQUATIC PRODUCT PROCESSING WASTEWATER BY ADVANCED A2/O – BAF SYSTEM

2018 ◽  
Vol 54 (4B) ◽  
pp. 200
Author(s):  
Nguyen Xuan Quynh Nhu

Combined system of Anaerobic/Anoxic/Oxic reactor with Biological Aerated Filter (A2/O – BAF) is used to enhance simultaneous removal of nitrogen and phosphorus on aquatic product processing wastewater treatment. A2/O reactor was operated with short solids retention time employed mainly for removal of organic matter and phosphorus together with denitrification and BAF with long solids retention time employed mainly for nitrification. The model of combined A2/O – BAF system made from polyacrylic with the capacity of 49.5 liters was operated with hydraulic retention time decreased from 19.2 to 9.6 hours and organic loading rates increased from 0.50 to 1.0 kgCOD/m3/day.  The results showed that the model not only treated organic matter well but also removed nearly completely both nitrogen and phosphorus. For loading rate of 0.75 kgCOD/m3/day, treatment efficiencies of COD, NH4+-N, TN, TP of the model were the highest as 91.02, 96.82, 84.08, 86.66  %, respectively and output values of these parameters were within the limits of QCVN 11:2008/BTNMT, column A.

RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42305-42311 ◽  
Author(s):  
Ying An ◽  
Zhen Zhou ◽  
Weimin Qiao ◽  
Wei Pan ◽  
Zhihui Chen

Owing to the long solids retention time and effective sludge decay, the increase in the amount of phosphorus and dissolved organic matter (DOM) in effluents is a major obstacle to the sludge in situ reduction process.


2000 ◽  
Vol 41 (12) ◽  
pp. 101-106 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternate conditions of anaerobic/aerobic was tested to simultaneously remove nitrogen and phosphorus from sewage. The factors affecting simultaneous removal of nitrogen and phosphorus by the two-biofilter system were investigated. Those factors appeared to be influent COD/T-N and COD/T-P ratio, nitrogen loading rate and hydraulic retention time. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The amount of biomass wasted during the backwash procedure also affected total nitrogen and phosphorus removal by the system.


2020 ◽  
Author(s):  
Dejene Tsegaye Bedane ◽  
Mohammed Mazharuddin Khan ◽  
Seyoum Leta Asfaw

Abstract Background : Wastewater from agro-industries such as slaughterhouse is typical organic wastewater with high value of biochemical oxygen demand, chemical oxygen demand, biological organic nutrients (Nitrogen and phosphate) which are insoluble, slowly biodegradable solids, pathogenic and non-pathogenic bacteria and viruses, parasite eggs. Moreover it contains high protein and putrefies fast leading to environmental pollution problem. This indicates that slaughterhouses are among the most environmental polluting agro-industries. Anaerobic digestion is a sequence of metabolic steps involving consortiums of several microbial populations to form a complex metabolic interaction network resulting in the conversation of organic matter into methane (CH 4 ), carbon dioxide (CO 2 ) and other trace compounds. Separation of the phase permits the optimization of the organic loading rate and HRT based on the requirements of the microbial consortiums of each phase. The purpose of this study was to optimize the working conditions for the hydrolytic - acidogenic stage in two step/phase anaerobic digestion of slaughterhouse wastewater. The setup of the laboratory scale reactor was established at Center for Environmental Science, College of Natural Science with a total volume of 40 liter (36 liter working volume and 4 liter gas space). The working parameters for hydrolytic - acidogenic stage were optimized for six hydraulic retention time 1-6 days and equivalent organic loading rate of 5366.43 – 894.41 mg COD/L day to evaluate the effect of the working parameters on the performance of hydrolytic – acidogenic reactor. Result : The finding revealed that hydraulic retention time of 3 day with organic loading rate of 1,788.81 mg COD/L day was a as an optimal working conditions for the parameters under study for the hydrolytic - acidogenic stage. The degree of hydrolysis and acidification were mainly influenced by lower hydraulic retention time (higher organic loading rate) and highest values recorded were 63.92 % at hydraulic retention time of 3 day and 53.26% at hydraulic retention time of 2 day respectively. Conclusion : The finding of the present study indicated that at steady state the concentration of soluble chemical oxygen demand and total volatile fatty acids increase as hydraulic retention time decreased or organic loading rate increased from 1 day hydraulic retention time to 3 day hydraulic retention time and decreases as hydraulic retention time increase from 4 to 6 day. The lowest concentration of NH 4 + -N and highest degree of acidification was also achieved at hydraulic retention time of 3 day. Therefore, it can be concluded that hydraulic retention time of 3 day/organic loading rate of 1,788.81 mg COD/L .day was selected as an optimal working condition for the high performance and stability during the two stage anaerobic digestion of slaughterhouse wastewater for the hydrolytic-acidogenic stage under mesophilic temperature range selected (37.5℃). Keywords : Slaughterhouse Wastewater, Hydrolytic – Acidogenic, Two Phase Anaerobic Digestion, Optimal Condition, Agro-processing wastewater


2004 ◽  
Vol 49 (11-12) ◽  
pp. 41-46 ◽  
Author(s):  
N. Schwarzenbeck ◽  
R. Erley ◽  
P.A. Wilderer

Aerobic granular sludge was successfully cultivated in a lab-scale SBR-system treating malting wastewater with a high content of particulate organic matter (0.9 gTSS/L). At an organic loading rate (CODtotal) of 3.4 kg/(m3·d) an average removal efficiency of 50% in CODtotal and 80% in CODdissolved was achieved. Fractionation of the COD by means of particle size showed that particles with a diameter less than 25–50 μm could be removed at 80% efficiency, whereas particles bigger than 50 μm were only removed at 40% efficiency. Tracer experiments revealed a dense sessile protozoa population covering the granules. The protozoa appeared to be responsible for primary particle uptake from the wastewater.


2014 ◽  
Vol 31 (6) ◽  
pp. 317-323 ◽  
Author(s):  
Mahyar Ghorbanian ◽  
Robert M. Lupitskyy ◽  
Jagannadh V. Satyavolu ◽  
R. Eric Berson

Sign in / Sign up

Export Citation Format

Share Document