scholarly journals RESEARCH ON THE ABILITY OF HANDLING AMMONIA CONTAMINATED AIR STREAM BY ACTIVATED CARBON MATERIALS FROM COCONUT FIBER (AC-1) AND PEANUT HUSK (AC-2), IMPREGNATED WITH ZnCl2

2018 ◽  
Vol 55 (4C) ◽  
pp. 38
Author(s):  
Nguyen Thi Kim Anh

This research aimed to investigate the ability of handling ammonia emission from waste gas by adsorption methods. The absorbents were activated carbon materials, which were made from coconut fiber (AC-1) and peanut husk (AC-2), impregnated with ZnCl2. Both of these materials have shown their abilities to remove NH3 (over 90 % efficiency) at the concentration of about 9000 ppm, while the removal efficiency of commercial activated carbon (AC-3) was 70 %. At the inlet concentration of about 3000 ppm, the maximum ammonia removal efficiency was 96.23 % when using AC-1 and 97.74 % using AC-2. The saturation time of each activated carbon was also examined. At inlet concentration of 2800 – 3200 ppm with gas flow rate was 0.4 L.min-1 and 5 g in mass material, the ammonia removal efficiencies of AC-1 and AC-2 were maintained at 80 % lasting for 600 minutes, but the efficiency of AC-3 rapidly decreased to 30 %. In all experiments, the activated carbon that made from peanut husk (AC-2), impregnated with ZnCl2 showed higher performance than one made from coconut fiber (AC-1) and commercial activated carbon (AC-3).

2012 ◽  
Vol 610-613 ◽  
pp. 1824-1828
Author(s):  
Zhi Fei Liu ◽  
De Hong Pang

Activated carbon and wood chips were applied respectively as packing material of bio-trickling filter and bio-filter which composed the compound bio-filter and the effect of different operating parameters on NOx removal efficiency were studied. The results show that the best operating conditions of the compound bio-filter are: NO inlet concentration 604.5 mg/m3, spray volume 1.2 L/h, gas flow 0.6 m3/h(empty bed residence time 103.7 s).In such cases,NOx removal efficiency is over 96% and NOx removal load of the packing material is 29.66 g/(m3•h) . The remove of NOx is mainly completed by the packing layer of 0~50 cm height both in the bio-trickling filter and in the bio-filter, that is to say ,when the total packing layer height of the compound bio-filter is 100 cm, the purification effect is ideal and economical; The system can return to normal in about 7 hr when the dynamic load changes largely and suddenly, showing that it has strong anti shock load capacity.


2021 ◽  
Vol 896 (1) ◽  
pp. 012047
Author(s):  
N Harihastuti ◽  
S Djayanti ◽  
I R J Sari

Abstract A pilot project research has been conducted to eliminate odor pollution from the feed mill industry. The feed industry in Indonesia has grown, especially in poultry feed production produced in modern feed mills equipped with pelleting technology. This industry is also having an environmental impact in the form of air pollution of its production activities. The laboratory analysis showed that ammonia has emitted, and it was the dominant parameter as the cause of odor in air pollution. This research aims to remove ammonia emissions using dry filtration technology with activated carbon as the filter media in the upright reactor. The reactor is designed from stainless steel material, consisting of 3 trays. The distance between trays is 300 mm, the dimensions of the tray are L.2430 mm, W.1815 mm, H.600 mm, the tray hole diameter is 3 mm. The average gas flow rate is 200-300 Nm3/min. Activated carbon used granules, size 6-8 mm, 200 mm thick in the tray. The results showed that the efficiency of ammonia removal was 81.96%-94.40% and had met the quality standards. This technology is feasible to control ammonia as an odor pollutant in the feed mill industry.


2009 ◽  
Vol 28 (1) ◽  
pp. 119 ◽  
Author(s):  
Eldon R. Rene ◽  
D. V. S. Murthy ◽  
T. Swaminathan

Biofiltration of process waste–gas streams using microorganisms attached to porous support matrix, at low concentrations and high gas flow rates, has gained importance as a versatile treatment technology ever since the Clean Air Act Amendments (1990), by the US – EPA came into existence. In this study, we evaluated the potential of a laboratory–scale biofilter, inoculated with mixed culture, to remove gas–phase benzene from a synthetic waste gas stream. Experiments were conducted in three different phases, after the acclimatization step, corresponding to empty bed residence times (EBRT) varying between 0.81–2.45 min and benzene concentrations up to 1.7 g/m3. At high concentrations, significant reduction in removal efficiency was observed, which may be due to insufficient biomass in the filter bed to utilize the substrate, or due to substrate inhibition at high concentrations. Removal efficiencies higher than 90% were achieved for inlet benzene loading rates lesser than 40 g/m3hr.


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


2015 ◽  
Vol 44 (46) ◽  
pp. 19956-19965 ◽  
Author(s):  
A. S. Bozzi ◽  
R. L. Lavall ◽  
T. E. Souza ◽  
M. C. Pereira ◽  
P. P. de Souza ◽  
...  

In this paper we show a very simple route for the incorporation of catalytically active niobium species on the surface of carbon materials, such as graphene oxide, carbon nanotubes and activated carbon.


Sign in / Sign up

Export Citation Format

Share Document