scholarly journals Polymorphism of the TMPRSS2 gene relating to COVID-19 subceptibility in Vietnamese population

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Nguyen Dang Ton ◽  
Vu Phuong Nhung ◽  
Duong Thu Trang ◽  
Nguyen Thi Thanh Hoa ◽  
Nguyen Hoai Nam ◽  
...  

Recently, a contagious lung disease named coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly spread worldwide and has many serious consequences for human health. Human genetic polymorphisms may contribute to the variation of incidence, mortality as well as severity of COVID-19. To date, this factor in the Vietnamese population remains unknown. A cellular protease termed transmembrane protease serine 2 (TMPRSS2) was found to play a vital role in the entry of SARS-CoV-2 into host cells. In this study, we investigated polymorphisms in the TMPRSS2 gene from 270 whole exome sequencing data of Vietnamese peoples. We also employed bioinformatics tools including SIFT, Polyphen-2, and PROVEAN to predict the possible function of missense variants. A total of 34 TMPRSS2 variants were identified, of which, 29 were in non-coding regions and 14 were in coding regions. Variants found in exons included seven synonymous and seven non-synonymous point mutations, one of which was novel mutation (c.A1336C/p.R446R). Mutation c.G589A/p.V197M (rs12329760) possesses the highest frequency and was predicted to have the ability to damage protein by SIFT and Polyphen-2. In addition, the damaging possibility was also found in c.T244G/p.Y82D and c.C896T/p.A299V variants. This study contributes to the understanding of Vietnamese genetic variation databases relating to susceptibility to COVID-19. 

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jong Seop Kim ◽  
Hyoungseok Jeon ◽  
Hyeran Lee ◽  
Jung Min Ko ◽  
Yonghwan Kim ◽  
...  

AbstractAn 11-year-old Korean boy presented with short stature, hip dysplasia, radial head dislocation, carpal coalition, genu valgum, and fixed patellar dislocation and was clinically diagnosed with Steel syndrome. Scrutinizing the trio whole-exome sequencing data revealed novel compound heterozygous mutations of COL27A1 (c.[4229_4233dup]; [3718_5436del], p.[Gly1412Argfs*157];[Gly1240_Lys1812del]) in the proband, which were inherited from heterozygous parents. The maternal mutation was a large deletion encompassing exons 38–60, which was challenging to detect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonia Moreno-Grau ◽  
◽  
Maria Victoria Fernández ◽  
Itziar de Rojas ◽  
Pablo Garcia-González ◽  
...  

AbstractLong runs of homozygosity (ROH) are contiguous stretches of homozygous genotypes, which are a footprint of inbreeding and recessive inheritance. The presence of recessive loci is suggested for Alzheimer’s disease (AD); however, their search has been poorly assessed to date. To investigate homozygosity in AD, here we performed a fine-scale ROH analysis using 10 independent cohorts of European ancestry (11,919 AD cases and 9181 controls.) We detected an increase of homozygosity in AD cases compared to controls [βAVROH (CI 95%) = 0.070 (0.037–0.104); P = 3.91 × 10−5; βFROH (CI95%) = 0.043 (0.009–0.076); P = 0.013]. ROHs increasing the risk of AD (OR > 1) were significantly overrepresented compared to ROHs increasing protection (p < 2.20 × 10−16). A significant ROH association with AD risk was detected upstream the HS3ST1 locus (chr4:11,189,482‒11,305,456), (β (CI 95%) = 1.09 (0.48 ‒ 1.48), p value = 9.03 × 10−4), previously related to AD. Next, to search for recessive candidate variants in ROHs, we constructed a homozygosity map of inbred AD cases extracted from an outbred population and explored ROH regions in whole-exome sequencing data (N = 1449). We detected a candidate marker, rs117458494, mapped in the SPON1 locus, which has been previously associated with amyloid metabolism. Here, we provide a research framework to look for recessive variants in AD using outbred populations. Our results showed that AD cases have enriched homozygosity, suggesting that recessive effects may explain a proportion of AD heritability.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Jennifer D. Hintzsche ◽  
William A. Robinson ◽  
Aik Choon Tan

Whole Exome Sequencing (WES) is the application of the next-generation technology to determine the variations in the exome and is becoming a standard approach in studying genetic variants in diseases. Understanding the exomes of individuals at single base resolution allows the identification of actionable mutations for disease treatment and management. WES technologies have shifted the bottleneck in experimental data production to computationally intensive informatics-based data analysis. Novel computational tools and methods have been developed to analyze and interpret WES data. Here, we review some of the current tools that are being used to analyze WES data. These tools range from the alignment of raw sequencing reads all the way to linking variants to actionable therapeutics. Strengths and weaknesses of each tool are discussed for the purpose of helping researchers make more informative decisions on selecting the best tools to analyze their WES data.


2017 ◽  
Vol 33 (15) ◽  
pp. 2402-2404 ◽  
Author(s):  
Alessandro Romanel ◽  
Tuo Zhang ◽  
Olivier Elemento ◽  
Francesca Demichelis

SoftwareX ◽  
2020 ◽  
Vol 11 ◽  
pp. 100478
Author(s):  
Lucas L. Cendes ◽  
Welliton de Souza ◽  
Iscia Lopes-Cendes ◽  
Benilton S. Carvalho

2019 ◽  
Vol 20 (17) ◽  
pp. 1189-1197 ◽  
Author(s):  
Vincent Gagné ◽  
Anne Aubry-Morin ◽  
Maria Plesa ◽  
Rachid Abaji ◽  
Kateryna Petrykey ◽  
...  

Aim: To evaluate top-ranking genes identified through genome-wide association studies for an association with corticosteroid-related osteonecrosis in children with acute lymphoblastic leukemia (ALL) who received Dana–Farber Cancer Institute treatment protocols. Patients & methods: Lead SNPs from these studies, as well as other variants in the same genes, pooled from whole exome sequencing data, were analyzed for an association with osteonecrosis in childhood ALL patients from Quebec cohort. Top-ranking variants were verified in the replication patient group. Results: The analyses of variants in the ACP1-SH3YL1 locus derived from whole exome sequencing data showed an association of several correlated SNPs (rs11553746, rs2290911, rs7595075, rs2306060 and rs79716074). The rs79716074 defines *B haplotype of the APC1 gene, which is well known for its functional role. Conclusion: This study confirms implication of the ACP1 gene in the treatment-related osteonecrosis in childhood ALL and identifies novel, potentially causal variant of this complication.


Sign in / Sign up

Export Citation Format

Share Document