scholarly journals Removal of steroid hormones and personal care products in wastewater by chemical precipitation

2007 ◽  
pp. 793-804
Author(s):  
Eva Eriksson ◽  
Heidi Birch ◽  
Henrik R. Andersen ◽  
Mogens Henze

The presence of steroid hormones and endocrine disrupting compounds (EDC) in theenvironment has been connected with the drop in semen quality in men and the number ofhem1aphrodite fish observed downstream wastewater treatment plants. EDC originating fromdown-the-drain chemicals can be reduced by mitigation options but the naturally occurringhormones must be removed though end-of-pipe treatment. In this study, coagulation andflocculation as well as these two techniques combined with sorption were applied to removeestrone, I 7P-estradiol and the synthetic hormone I7a-ethynylestradiol as well as thepreservatives methyl paraben, ethyl paraben, propyl paraben, butyl paraben and isobutylparaben from primary and secondary treated municipal wastewater. It was found thatcoagulation with both iron and aluminium together with an anionic flocculant successfullyremoved organic matter and dissolved phosphorous but not the hormones and only up to 30%of the parabens. This was seen both in the chemical analyses of the individual substances andwell as in an assay of the oestrogenic effects. Applications of powdered activated carbon preand post the chemical coagulation-flocculation significantly increased the oestrogen removal,which is consistent with existing literature. The treatment processes in the studied wastewatertreatment plant removed both the oestrogens and the parabens to below the limit of detection ,though a detectable but small oestrogenicity in the effluent cannot be disregarded.

2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 162 ◽  
Author(s):  
Daniel Wolecki ◽  
Magda Caban ◽  
Magdalena Pazda ◽  
Piotr Stepnowski ◽  
Jolanta Kumirska

The problem of the presence of pharmaceuticals and endocrine disrupting compounds (EDCs) in the environment is closely related to municipal wastewater and in consequence to municipal wastewater treatment plants (MWWTPs) because wastewater is the main way in which these compounds are transferred to the ecosystem. For this reason, the development of cheap, simple but very effective techniques for the removal of such residues from wastewater is very important. In this study, the analysis of the potential of using three new plants: Cyperus papyrus (Papyrus), Lysimachia nemorum (Yellow pimpernel), and Euonymus europaeus (European spindle) by hydroponic cultivation for the removal of 15 selected pharmaceuticals and endocrine disrupting compounds (EDCs) in an MWWTP is presented. In order to obtain the most reliable data, this study was performed using real WWTP conditions and with the determination of the selected analytes in untreated sewage, treated sewage, and in plant materials. For determining the target compounds in plant materials, an Accelerated Solvent Extraction (ASE)-Solid-Phase Extraction (SPE)-GC-MS(SIM) method was developed and validated. The obtained data proved that the elimination efficiency of the investigated substances from wastewater was in the range of 35.8% for diflunisal to above 99.9% for paracetamol, terbutaline, and flurbiprofen. Lysimachia nemorum was the most effective for the uptake of target compounds among the tested plant species. Thus, the application of constructed wetlands for supporting conventional MWWTPs allowed a significant increase in their removal from the wastewater stream.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


Water ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 128 ◽  
Author(s):  
Monica Cook ◽  
Erin Symonds ◽  
Bert Gerber ◽  
Armando Hoare ◽  
Edward Van Vleet ◽  
...  

2012 ◽  
Vol 65 (7) ◽  
pp. 1179-1189 ◽  
Author(s):  
S. Martin Ruel ◽  
J.-M. Choubert ◽  
H. Budzinski ◽  
C. Miège ◽  
M. Esperanza ◽  
...  

The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range. During the present work more than 100 substances were analysed through on-site mass balances over 19 municipal wastewater treatment lines. The most relevant substances according to their occurrence in raw wastewater, in treated wastewater and in sludge were identified, and their fate in wastewater treatment processes was assessed. About half of priority substances of WFD were found at concentrations higher than 0.1 μg/L in wastewater. For 26 substances, potential non-compliance with Environmental Quality Standard of Water Framework Directive has been identified in treated wastewater, depending on river flow. Main concerns are for Cd, DEHP, diuron, alkylphenols, and chloroform. Emerging substances of particular concern are by-products, organic chemicals (e.g. triclosan, benzothiazole) and pharmaceuticals (e.g. ketoprofen, diclofenac, sulfamethoxazole, carbamazepine). About 80% of the load of micropollutants was removed by conventional activated sludge plants, but about two-thirds of removed substances were mainly transferred to sludge.


Sign in / Sign up

Export Citation Format

Share Document