scholarly journals Thermoelastic strongly nonlinear vibration of rotating functionally graded ring plate

Author(s):  
Yu Da Hu ◽  
Hai Jun Bao ◽  
Hao Ran Xu
Author(s):  
Hamid Reza Talebi Amanieh ◽  
Seyed Alireza Seyed Roknizadeh ◽  
Arash Reza

In this paper, the nonlinear vibrational behavior of a sandwich plate with embedded viscoelastic material is studied through the use of constitutive equations with fractional derivatives. The studied sandwich structure is consisted of a viscoelastic core that is located between the faces of functionally graded magneto-electro-elastic (FG-MEE). In order to determine the frequency-dependent feature of the viscoelastic layer, four-parameter fractional derivative model is utilized. The material properties of FG-MEE face sheets have been distributed considering the power law scheme along the thickness. In addition, for derivation of the governing equations on the sandwich plate, first-order shear deformation plate theory along with von Karman-type of kinematic nonlinearity are implemented. The derived partial differential equations (PDEs) have been transformed to the ordinary differential equations (ODEs) through the Galerkin method. After that, the nonlinear vibration equations for the sandwich plate have been solved by multiple time scale perturbation technique. Moreover, for evaluating the effect of different parameters such as electric and magnetic fields, fractional order, the ratio of the core-to-face thickness and the power low index on the nonlinear vibration characteristics of sandwich plates with FG-MEE face sheets, the parametric analysis has been performed. The obtained results revealed the enhanced nonlinear natural frequency through an increment in the fractional order. Furthermore, the prominent influence of fractional order on the nonlinear frequency of sandwich plate was declared at the negative electric potential and positive magnetic potential.


Author(s):  
Vahid Movahedfar ◽  
Mohammad M Kheirikhah ◽  
Younes Mohammadi ◽  
Farzad Ebrahimi

Based on modified strain gradient theory, nonlinear vibration analysis of a functionally graded piezoelectric doubly curved microshell in thermal environment has been performed in this research. Three scale parameters have been included in the modeling of thin doubly curved microshell in order to capture micro-size effects. Graded material properties between the top and bottom surfaces of functionally graded piezoelectric doubly curved microshell have been considered via incorporating power-law model. It is also assumed that the microshell is exposed to a temperature field of uniform type and the material properties are temperature-dependent. By analytically solving the governing equations based on the harmonic balance method, the closed form of nonlinear vibration frequency has been achieved. Obtained results indicate the relevance of calculated frequencies to three scale parameters, material gradation, electrical voltage, curvature radius, and temperature changes.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Y. H. Qian ◽  
J. L. Pan ◽  
S. P. Chen ◽  
M. H. Yao

The exact solutions of the nonlinear vibration systems are extremely complicated to be received, so it is crucial to analyze their approximate solutions. This paper employs the spreading residue harmonic balance method (SRHBM) to derive analytical approximate solutions for the fifth-order nonlinear problem, which corresponds to the strongly nonlinear vibration of an elastically restrained beam with a lumped mass. When the SRHBM is used, the residual terms are added to improve the accuracy of approximate solutions. Illustrative examples are provided along with verifying the accuracy of the present method and are compared with the HAM solutions, the EBM solutions, and exact solutions in tables. At the same time, the phase diagrams and time history curves are drawn by the mathematical software. Through analysis and discussion, the results obtained here demonstrate that the SRHBM is an effective and robust technique for nonlinear dynamical systems. In addition, the SRHBM can be widely applied to a variety of nonlinear dynamic systems.


Sign in / Sign up

Export Citation Format

Share Document