scholarly journals ANALYZING THE IMPACT OF CLIMATE CHANGE ON NATURAL VEGETATION GREENNESS USING IMPROVED STATISTICAL VEGETATION INDEX SIMULATION MODEL

2019 ◽  
Vol 17 (2) ◽  
pp. 4677-4691
Author(s):  
R Z TONG
2020 ◽  
Vol 12 (6) ◽  
pp. 2345
Author(s):  
Lazarus Chapungu ◽  
Luxon Nhamo ◽  
Roberto Cazzolla Gatti ◽  
Munyaradzi Chitakira

This study examined the impact of climate change on plant species diversity of a savanna ecosystem, through an assessment of climatic trends over a period of forty years (1974–2014) using Masvingo Province, Zimbabwe, as a case study. The normalised difference vegetation index (NDVI) was used as a proxy for plant species diversity to cover for the absence of long-term historical plant diversity data. Observed precipitation and temperature data collected over the review period were compared with the trends in NDVI to understand the impact of climate change on plant species diversity over time. The nonaligned block sampling design was used as the sampling framework, from which 198 sampling plots were identified. Data sources included satellite images, field measurements, and direct observations. Temperature and precipitation had significant (p < 0.05) trends over the period under study. However, the trend for seasonal total precipitation was not significant but declining. Significant correlations (p < 0.001) were identified between various climate variables and the Shannon index of diversity. NDVI was also significantly correlated to the Shannon index of diversity. The declining trend of plant species in savanna ecosystems is directly linked to the decreasing precipitation and increasing temperatures.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

Sign in / Sign up

Export Citation Format

Share Document