scholarly journals Climate adaptive agricultural extension approaches for putting research into use

2021 ◽  
Vol 17 (1) ◽  
pp. 126-129
Author(s):  
Dhanusha Balakrishnan ◽  
Vani Chandran ◽  
B. Seema ◽  
Preethu K. Paul

The reality of climate change is harsh and it’s a bitter truth for most of our farmers. In the present situation, climate change is one of the most important challenges to food security. Pertinent actions are, therefore, needed to address these challenges to enable the agricultural sector to significantly contribute to the attainment of agriculture development. Climate adaptive agricultural approach is an approach for developing agricultural strategies to secure sustainable food security under climate change. Through CAA the quality and quantity of agricultural production can be increased and production costs can be decreased. For example, with climatologically data it is also possible to recognize bad weather conditions and to be more prepared to minimize the damage. Many projects have recently adopted with the idea of climate smart agriculture for mitigating the challenges of climate change. With the help of suitable extension approaches we can effectively disseminate various climate smart agricultural practices to farming community.

Author(s):  
Gayatri Sahu ◽  
Pragyan Paramita Rout ◽  
Suchismita Mohapatra ◽  
Sai Parasar Das ◽  
Poonam Preeti Pradhan

World population is increasing day by day and at the same time agriculture is threatened due to natural resource degradation and climate change. A growing global population and changing diets are driving up the demand for food. The food security challenge will only become more difficult, as the world will need to produce about 70 percent more food by 2050 to feed an estimated 9 billion people. Production stability, agricultural productivity, income and food security is negatively affected by changing climate. Therefore, agriculture must change according to present situation for meeting the need of food security and also withstanding under changing climatic situation. Agriculture is a prominent source as well as a sink of greenhouse gases (GHGs). So, there is a need to modify agricultural practices in a sustainable way to overcome these problems. Developing climate smart agriculture is thus crucial to achieving future food security and climate change goals. It helps the agricultural system to resist damage and recover quickly by adaptation and mitigation strategies. Sustainable Intensification is an essential means of adapting to climate change, also resulting in lower emissions per unit of output. With its emphasis on improving risk management, information flows and local institutions to support adaptive capacity, CSA provides the foundations for incentivizing and enabling intensification. Since climate smart agriculture is defined along three pillars (productivity increases, building resilience and adapting, and GHG emission reduction), key concepts such as productivity, resilience, vulnerability and carbon sequestration provide indicators for future empirical measurements of the climate smart agriculture concept.


Author(s):  
ZA Riyadh ◽  
MA Rahman ◽  
SR Saha ◽  
T Ahamed ◽  
D Current

Geographical position makes Bangladesh globally as one of the most vulnerable countries to climate change. It is observed that climate change has become a burning issue jeopardizing the agricultural production in the country. Considering the issue, adoption of climate smart agriculture (CSA) is indispensable for mitigating climate change by reducing emissions, capturing the atmospheric carbon and storing it in biomass and soil. The study reviewed the literature to evaluate the potentiality of agroforestry practices as climate smart agriculture to mitigate climate change impacts. Agroforestry has traditionally contributed to climate resilience in Bangladesh by integrating trees and/or crops into different land use practices. Agroforestry systems enhance resilience to climate change through increasing tree cover, carbon sequestration, increasing production, reducing threats to associated crops, creating favourable microclimate to support associated crops, reducing harvest pressure on natural forests, conserving biodiversity and cycling nutrients. Globally 23 countries recognize agroforestry as a mitigation priority, whereas 29 as an adaptation priority. Bangladesh has potential to expand agroforestry practices to mitigate climate change and boost food security. From socioeconomic and ecological point of views as well, agroforestry offers strong potential to evolve climate smart agricultural practices supporting food security, and adaptation and mitigation. Agroforestry practices should increase in climate vulnerable agroecosystems of Bangladesh. Int. J. Agril. Res. Innov. Tech. 11(1): 49-59, June 2021


2018 ◽  
Vol 10 (8) ◽  
pp. 2616 ◽  
Author(s):  
Dhanush Dinesh ◽  
Robert Zougmore ◽  
Joost Vervoort ◽  
Edmond Totin ◽  
Phillip Thornton ◽  
...  

Climate change impacts on agriculture have become evident, and threaten the achievement of global food security. On the other hand, the agricultural sector itself is a cause of climate change, and if actions are not taken, the sector might impede the achievement of global climate goals. Science-policy engagement efforts are crucial to ensure that scientific findings from agricultural research for development inform actions of governments, private sector, non-governmental organizations (NGOs) and international development partners, accelerating progress toward global goals. However, knowledge gaps on what works limit progress. In this paper, we analyzed 34 case studies of science-policy engagement efforts, drawn from six years of agricultural research for development efforts around climate-smart agriculture by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Based on lessons derived from these case studies, we critically assessed and refined the program theory of the CCAFS program, leading to a revised and improved program theory for science-policy engagement for agriculture research for development under climate change. This program theory offers a pragmatic pathway to enhance credibility, salience and legitimacy of research, which relies on engagement (participatory and demand-driven research processes), evidence (building scientific credibility while adopting an opportunistic and flexible approach) and outreach (effective communication and capacity building).


2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Victor Adjei

Climate change is unequivocal and nothing hides itself from its negative repercussions. Countries in sub-Saharan Africa will continue to be impacted due to their low adaptive capacities and geographic position. Unfavourable weather trends coupled with climatic variations will have adverse effect on agricultural sector which is the main source of livelihood to rural households on the continent. This literature review article assessed the impacts of climate change on agriculture and food security in Africa. The lives of several in Africa cling on agriculture as it supports majority of the population. However, since over 90 percent of agriculture system in the region depends on rainfall, livelihoods of the citizens on the continent have been hit hard due to rising temperature, erratic rainfall and extreme weather conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1564
Author(s):  
Kofi Akamani

Although the transition to industrial agriculture in the 20th century resulted in increased agricultural productivity and efficiency, the attainment of global food security continues to be elusive. Current and anticipated impacts of climate change on the agricultural sector are likely to exacerbate the incidence of food insecurity. In recent years, climate-smart agriculture has gained recognition as a mechanism that has the potential to contribute to the attainment of food security and also enhance climate change mitigation and adaptation. However, several conceptual and implementation shortfalls have limited the widespread adoption of this innovative agricultural system at the landscape scale. This manuscript argues for the use of ecosystem management as an overarching framework for the conceptualization and implementation of climate-smart agriculture. The manuscript focuses on clarifying the foundational assumptions and management goals, as well as the knowledge and institutional requirements of climate-smart agriculture using the principles of ecosystem management. Potential challenges that may be faced by the application of an ecosystem management approach to climate-smart agriculture are also discussed. Furthermore, the manuscript calls for a heightened focus on social equity in the transition toward an ecosystem-based approach to climate-smart agriculture. The US farm bill is used as an illustrative case study along with other examples drawn mostly from sub-Saharan Africa.


2021 ◽  
Vol 940 (1) ◽  
pp. 012089
Author(s):  
H Pribadi ◽  
S Jumiyati ◽  
A Muis ◽  
I K Widnyana ◽  
J Mustabi

Abstract The rate of world population growth gets faster every year, while on the other hand the land available for food production activities is increasingly limited. Efforts to increase income and food crop production by using cocoa farming to support national food security can be done by optimizing of land through crop diversification patterns by planting local tubers under cocoa farming. This research aims to analyze the optimization of land use, revenue and production costs. In addition, analyzing the nutritional content contained in each type of local tubers, namely sweet potato, cassava and taro. The research was conducted in the the buffer zone of Lore Lindu National Park (TNLL), Palolo District, Sigi Regency, Central Sulawesi Province, Indonesia. The results showed that the optimization of land use and revenue was obtained through the diversification pattern of sweet potato and cocoa. Optimization of the costs use occurs in the use of fertilizer production inputs. In addition, sweet potatoes have a higher calorific value, protein and fat compared to cassava and taro. However, the carbohydrate content of cassava is higher than that of sweet potato and taro.


Author(s):  
Never Mujere

Concerns of food and environmental security have increased enormously in recent years due to the vagaries of climate change and variability. Efforts to promote food security and environmental sustainability often reinforce each other and enable farmers to adapt to and mitigate the impact of climate change and other stresses. Some of these efforts are based on appropriate technologies and practices that restore natural ecosystems and improve the resilience of farming systems, thus enhancing food security. Climate smart agriculture (CSA) principles, for example, translate into a number of locally-devised and applied practices that work simultaneously through contextualised crop-soil-water-nutrient-pest-ecosystem management at a variety of scales. The purpose of this paper is to review concisely the current state-of-the-art literature and ascertain the potential of the Pfumvudza concept to enhance household food security, climate change mitigation and adaptation as it is promoted in Zimbabwe. The study relied heavily on data from print and electronic media. Datasets pertaining to carbon, nitrous oxide and methane storage in soils and crop yield under zero tillage and conventional tillage were compiled. Findings show that, compared to conventional farming, Pfumvudza has great potential to contribute towards household food security and reducing carbon emissions if implemented following the stipulated recommendations. These include among others, adequate land preparation and timely planting and acquiring inputs. However, nitrous oxide emissions tend to increase with reduced tillage and, the use of artificial fertilizers, pesticides and herbicides is environmentally unfriendly.


2020 ◽  
Vol 228 (3) ◽  
pp. 823-827
Author(s):  
Ashwani Pareek ◽  
Rohit Joshi ◽  
Kapuganti Jagadis Gupta ◽  
Sneh L. Singla‐Pareek ◽  
Christine Foyer

Sign in / Sign up

Export Citation Format

Share Document