scholarly journals Synthesis and research of polyfunctional silylureas used in electric deposition of tin-indium alloy

2021 ◽  
Vol 8 (3) ◽  
pp. 20210305
Author(s):  
K. Yu. Ivanova ◽  
M. V. Kuzmin ◽  
L. G. Rogozhina ◽  
A. O. Patianova ◽  
V. L. Semenov ◽  
...  

Polyfunctional silylureas were synthesized by the interaction of 3-aminopropyltriethoxysilane with isocyanates of various structures in an inert aromatic solvent. Commercially available diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, 2,4-toluene diisocyanate were used as isocyanates. In this case, freshly distilled toluene was used as a solvent. The structures of the obtained compounds were confirmed by the data of IR and NMR1H spectroscopy. Using the synthesized compounds, formulations of compositions for electrodeposition of a tin-indium alloy on a copper wire were developed. The possibility of using silylureas of various structures as effective surfactants used in the electrodeposition of the tin-indium alloy is shown. The operational characteristics of the obtained wire were investigated, including the wire diameter, coating thickness, tensile strength, electrical resistance, and direct current electrical resistivity.

Dermatitis ◽  
2005 ◽  
Vol 16 (3) ◽  
pp. 130-135
Author(s):  
Malin Frick-Engfeldt ◽  
Erik Zimerson ◽  
Daniel Karlsson ◽  
Åsa Marand ◽  
Gunnar Skarping ◽  
...  

Dermatitis ◽  
2005 ◽  
Vol 16 (03) ◽  
pp. 130 ◽  
Author(s):  
Malin Frick-Engfeldt ◽  
Erik Zimerson ◽  
Daniel Karlsson ◽  
Åsa Marand ◽  
Gunnar Skarping ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2106
Author(s):  
Chris J. Barnett ◽  
James D. McGettrick ◽  
Varun Shenoy Gangoli ◽  
Ewa Kazimierska ◽  
Alvin Orbaek White ◽  
...  

Carbon nanotubes (CNTs) can be spun into fibers as potential lightweight replacements for copper in electrical current transmission since lightweight CNT fibers weigh <1/6th that of an equivalently dimensioned copper wire. Experimentally, it has been shown that the electrical resistance of CNT fibers increases with longitudinal strain; however, although fibers may be under radial strain when they are compressed during crimping at contacts for use in electrical current transport, there has been no study of this relationship. Herein, we apply radial stress at the contact to a CNT fiber on both the nano- and macro-scale and measure the changes in fiber and contact resistance. We observed an increase in resistance with increasing pressure on the nanoscale as well as initially on the macro scale, which we attribute to the decreasing of axial CNT…CNT contacts. On the macro scale, the resistance then decreases with increased pressure, which we attribute to improved radial contact due to the closing of voids within the fiber bundle. X-ray photoelectron spectroscopy (XPS) and UV photoelectron spectroscopy (UPS) show that applied pressure on the fiber can damage the π–π bonding, which could also contribute to the increased resistance. As such, care must be taken when applying radial strain on CNT fibers in applications, including crimping for electrical contacts, lest they operate in an unfavorable regime with worse electrical performance.


Author(s):  
Diego L. Castañeda-Saldarriaga ◽  
Joham Alvarez-Montoya ◽  
Vladimir Martínez-Tejada ◽  
Julián Sierra-Pérez

AbstractSelf-sensing concrete materials, also known as smart concretes, are emerging as a promising technological development for the construction industry, where novel materials with the capability of providing information about the structural integrity while operating as a structural material are required. Despite progress in the field, there are issues related to the integration of these composites in full-scale structural members that need to be addressed before broad practical implementations. This article reports the manufacturing and multipurpose experimental characterization of a cement-based matrix (CBM) composite with carbon nanotube (CNT) inclusions and its integration inside a representative structural member. Methodologies based on current–voltage (I–V) curves, direct current (DC), and biphasic direct current (BDC) were used to study and characterize the electric resistance of the CNT/CBM composite. Their self-sensing behavior was studied using a compression test, while electric resistance measures were taken. To evaluate the damage detection capability, a CNT/CBM parallelepiped was embedded into a reinforced-concrete beam (RC beam) and tested under three-point bending. Principal finding includes the validation of the material’s piezoresistivity behavior and its suitability to be used as strain sensor. Also, test results showed that manufactured composites exhibit an Ohmic response. The embedded CNT/CBM material exhibited a dominant linear proportionality between electrical resistance values, load magnitude, and strain changes into the RC beam. Finally, a change in the global stiffness (associated with a damage occurrence on the beam) was successfully self-sensed using the manufactured sensor by means of the variation in the electrical resistance. These results demonstrate the potential of CNT/CBM composites to be used in real-world structural health monitoring (SHM) applications for damage detection by identifying changes in stiffness of the monitored structural member.


1957 ◽  
Vol 35 (8) ◽  
pp. 892-900 ◽  
Author(s):  
G. K. White ◽  
S. B. Woods

Measurements of the thermal conductivity from 2° to 90 ° K. and electrical conductivity from 2° to 300 ° K. are reported for vanadium, niobium, and hafnium. Although the vanadium and hafnium are not as pure as we might wish, measurements on these metals and on niobium allow a tabulation of the "ideal" electrical resistivity clue to thermal scattering for these elements from 300 ° K. down to about 20 ° K. Ice-point values of the "ideal" electrical resistivity are 18.3 μΩ-cm. for vanadium, 13.5 μΩ-cm. for niobium, and 29.4 μΩ-cm. for hafnium. Values for the "ideal" thermal resistivity of vanadium and niobium are deduced from the experimental results although for vanadium and more particularly for hafnium, higher purity specimens are required before a very reliable study of "ideal" thermal resistivity can be made. For the highly ductile pure niobium, the superconducting transition temperature, as determined from electrical resistance, appears to be close to 9.2 ° K.


2015 ◽  
Vol 204 (2) ◽  
pp. 1316-1331 ◽  
Author(s):  
Zhenlu Shao ◽  
Deming Wang ◽  
Yanming Wang ◽  
Xiaoxing Zhong ◽  
Xiaofei Tang ◽  
...  

Author(s):  
Lauren A. Chai ◽  
Brian W. Anthony

Carbon nanofibers in polymer-based composites reduce the electrical resistivity of the composite but can be up to 100 times more expensive than the bulk polymer. This work uses acoustic focusing to organize and compact carbon nanofibers in a mineral oil mixture. The result is a decrease in the composite electrical resistivity without an increase in the global volume fraction of the fibers in the composite and associated material cost. The composite consisted of Pyrograf PR-19-LHT carbon nanofibers mixed in light mineral oil at 1.6% volume fraction carbon nanofibers. The mixture was contained in a 1 cm × 1 cm × 4 cm glass cuvette. A PZT-4 piezoelectric transducer, epoxied to the external face of one of the sidewalls, generated the acoustic radiation forces in the container. A 1.179 MHz sinusoidal signal powered the transducer, producing a standing wave with 27 nodes and 13 antinodes in the container. A digital multimeter performed the 2-wire resistance measurement before, during and after focusing. Settling of the filler due to gravity resulted in an initial drop in the electrical resistance. Once the mixture reached steady state, toggling the signal power off and on also toggled the approximate electrical resistance between the 19.2 MOhms and 11.5 MOhms respectively. This work also presents a simple volume fraction model, which predicted that the focused resistance would be 34% of the unfocused value. In the experiment, acoustic focusing reduced the electrical resistance to 60% of the resistance in the unfocused mixture, demonstrating acoustic focusing as a method for reducing electrical conductivity within a composite.


Sign in / Sign up

Export Citation Format

Share Document