The association between changes in the intravaginal electrical resistance and the in vitro measurements of vaginal mucus electrical resistivity in cattle

1983 ◽  
Vol 5 (4) ◽  
pp. 323-328 ◽  
Author(s):  
M.B. Aboul-Ela ◽  
D.C. Macdonald ◽  
D. Lindsay ◽  
J.H. Topps ◽  
R. Mani
Ultrasonics ◽  
2010 ◽  
Vol 50 (2) ◽  
pp. 202-207 ◽  
Author(s):  
B. Audoin ◽  
C. Rossignol ◽  
N. Chigarev ◽  
M. Ducousso ◽  
G. Forget ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 619-628
Author(s):  
Chen Yuan ◽  
Ya Mo ◽  
Jie Yang ◽  
Mei Zhang ◽  
Xuejun Xie

AbstractAdvanced glycosylation end products (AGEs) are harmful factors that can damage the inner blood–retinal barrier (iBRB). Rat retinal microvascular endothelial cells (RMECs) were isolated and cultured, and identified by anti-CD31 and von Willebrand factor polyclonal antibodies. Similarly, rat retinal Müller glial cells (RMGCs) were identified by H&E staining and with antibodies of glial fibrillary acidic protein and glutamine synthetase. The transepithelial electrical resistance (TEER) value was measured with a Millicell electrical resistance system to observe the leakage of the barrier. Transwell cell plates for co-culturing RMECs with RMGCs were used to construct an iBRB model, which was then tested with the addition of AGEs at final concentrations of 50 and 100 mg/L for 24, 48, and 72 h. AGEs in the in vitro iBRB model constructed by RMEC and RMGC co-culture led to the imbalance of the vascular endothelial growth factor (VEGF) and pigment epithelial derivative factor (PEDF), and the permeability of the RMEC layer increased because the TEER decreased in a dose- and time-dependent manner. AGEs increased VEGF but lowered PEDF in a dose- and time-dependent manner. The intervention with AGEs led to the change of the transendothelial resistance of the RMEC layer likely caused by the increased ratio of VEGF/PEDF.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Paulina Smyk ◽  
Iga Hołyńska-Iwan ◽  
Dorota Olszewska-Słonina

Background. Propolis and its ethanol extract show positive germicidal, bacteriostatic, and anti-inflammatory antioxidants and regenerative properties after use on the surface of the skin. Propolis is in common use in production of cosmetics and in folk medicine. The influence of this resinous mixture on ion channels, channels located in skin cells membranes and skin electrical resistance, was not explained. Objective. The main aim of the study was the evaluation of electrophysiological skin parameters during mechanical and chemical-mechanical stimulation after use of ethanol extract of propolis and propolis ointment in comparison with iso-osmotic Ringer solution. Methods. Skin fragments were taken from white New Zealand rabbits and distributed into three experimental groups which were incubated in ethanol extract of propolis (EEP), propolis ointment, and Ringer solution. Then they were placed in a Ussing chamber to measure electrophysiological parameters values. Results. In this study the influence of EEP on changes in value of electrical potential during block of chloride ions transport at the same time was observed. Ethanol propolis extract dissolved in water increases the transepidermal sodium ions transport in contrast to propolis ointment. Conclusion. The way of preparation cosmetics, which contain propolis, has effects on transepidermal ions transport in the rabbit’s skin. The value of skin electrical resistance is changing with penetration depth of active propolis substances contained in cosmetics.


2009 ◽  
Vol 74 ◽  
pp. 149-152
Author(s):  
X.M. Zhang ◽  
M. Yu ◽  
Silas Nesson ◽  
H. Bae ◽  
A. Christian ◽  
...  

This paper reports the development of a miniature pressure sensor on the optical fiber tip for in vitro measurements of rodent intradiscal pressure. The sensor element is biocompatible and can be fabricated by simple, batch-fabrication methods in a non-cleanroom environment with good device-to-device uniformity. The fabricated sensor element has an outer diameter of only 366 μm, which is small enough to be inserted into the rodent discs without disrupting the structure or altering the intradiscal pressures. In the calibration, the sensor element exhibits a linear response to the applied pressure over the range of 0 - 70 kPa, with a sensitivity of 0.0206 μm/kPa and a resolution of 0.17 kPa.


2007 ◽  
Vol 336-338 ◽  
pp. 1577-1580 ◽  
Author(s):  
Chuan Lin Zheng ◽  
Wu Bao Yang ◽  
X. Chang

Tetrahedral amorphous carbon (ta-C) films were deposited onto Si(100) wafers by using filtered cathodic vacuum arc technique (FCVA). The influence of the negative bias voltage applied to substrates on film structures was studied by Raman spectroscopy, X-ray photoemission spectroscopy (XPS). The ta-C films showed maximal sp3 fractions 87%, the hardness and elastic modulus of the ta-C film is 72 and 480 GPa, respectively. In vitro measurements of contact angle and platelet adhesion were applied to evaluate the biocompatibility of the ta-C films in comparison with that of NiTi, 316L and pure titanium. The results show that the ta-C films have hydrophobicity and exhibit better hemocompatibility which are very suitable for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document