scholarly journals Height Extraction and Stand Volume Estimation Based on Fusion Airborne LiDAR Data and Terrestrial Measurements for a Norway Spruce [Picea abies (L.) Karst.] Test Site in Romania

2016 ◽  
Vol 44 (1) ◽  
pp. 313-323 ◽  
Author(s):  
Bogdan APOSTOL ◽  
Adrian LORENT ◽  
Marius PETRILA ◽  
Vladimir GANCZ ◽  
Ovidiu BADEA

The objective of this study was to analyze the efficiency of individual tree identification and stand volume estimation from LiDAR data. The study was located in Norway spruce [Picea abies (L.) Karst.] stands in southwestern Romania and linked airborne laser scanning (ALS) with terrestrial measurements through empirical modelling. The proposed method uses the Canopy Maxima algorithm for individual tree detection together with biometric field measurements and individual trees positioning. Field data was collected using Field-Map real-time GIS-laser equipment, a high-accuracy GNSS receiver and a Vertex IV ultrasound inclinometer. ALS data were collected using a Riegl LMS-Q560 instrument and processed using LP360 and Fusion software to extract digital terrain, surface and canopy height models. For the estimation of tree heights, number of trees and tree crown widths from the ALS data, the Canopy Maxima algorithm was used together with local regression equations relating field-measured tree heights and crown widths at each plot. When compared to LiDAR detected trees, about 40-61% of the field-measured trees were correctly identified. Such trees represented, in general, predominant, dominant and co-dominant trees from the upper canopy. However, it should be noted that the volume of the correctly identified trees represented 60-78% of the total plot volume. The estimation of stand volume using the LiDAR data was achieved by empirical modelling, taking into account the individual tree heights (as identified from the ALS data) and the corresponding ground reference stem volume. The root mean square error (RMSE) between the individual tree heights measured in the field and the corresponding heights identified in the ALS data was 1.7-2.2 meters. Comparing the ground reference estimated stem volume (at trees level) with the corresponding ALS estimated tree stem volume, an RMSE of 0.5-0.7 m3 was achieved. The RMSE was slightly lower when comparing the ground reference stem volume at plot level with the ALS-estimated one, taking into account both the identified and unidentified trees in the LiDAR data (0.4-0.6 m3).

Sensors ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 278-295 ◽  
Author(s):  
Andreas Jochem ◽  
Markus Hollaus ◽  
Martin Rutzinger ◽  
Bernhard Höfle

In this study, a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB) estimation of a spruce dominated alpine forest. The reference AGB of the available sample plots is calculated from forest inventory data by means of biomass expansion factors. Furthermore, the semi-empirical model is extended by three different canopy transparency parameters derived from airborne LiDAR data. These parameters have not been considered for stem volume estimation until now and are introduced in order to investigate the behavior of the model concerning AGB estimation. The developed additional input parameters are based on the assumption that transparency of vegetation can be measured by determining the penetration of the laser beams through the canopy. These parameters are calculated for every single point within the 3D point cloud in order to consider the varying properties of the vegetation in an appropriate way. Exploratory Data Analysis (EDA) is performed to evaluate the influence of the additional LiDAR derived canopy transparency parameters for AGB estimation. The study is carried out in a 560 km2 alpine area in Austria, where reference forest inventory data and LiDAR data are available. The investigations show that the introduction of the canopy transparency parameters does not change the results significantly according to R2 (R2 = 0.70 to R2 = 0.71) in comparison to the results derived from, the semi-empirical model, which was originally developed for stem volume estimation.


2020 ◽  
Vol 12 (9) ◽  
pp. 1513 ◽  
Author(s):  
Rodrigo Vieira Leite ◽  
Cibele Hummel do Amaral ◽  
Raul de Paula Pires ◽  
Carlos Alberto Silva ◽  
Carlos Pedro Boechat Soares ◽  
...  

Forest plantations are globally important for the economy and are significant for carbon sequestration. Properly managing plantations requires accurate information about stand timber stocks. In this study, we used the area (ABA) and individual tree (ITD) based approaches for estimating stem volume in fast-growing Eucalyptus spp forest plantations. Herein, we propose a new method to improve individual tree detection (ITD) in dense canopy homogeneous forests and assess the effects of stand age, slope and scan angle on ITD accuracy. Field and Light Detection and Ranging (LiDAR) data were collected in Eucalyptus urophylla x Eucalyptus grandis even-aged forest stands located in the mountainous region of the Rio Doce Valley, southeastern Brazil. We tested five methods to estimate volume from LiDAR-derived metrics using ABA: Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine (SVM), and linear and Gompertz models. LiDAR-derived canopy metrics were selected using the Recursive Feature Elimination algorithm and Spearman’s correlation, for nonparametric and parametric methods, respectively. For the ITD, we tested three ITD methods: two local maxima filters and the watershed method. All methods were tested adding our proposed procedure of Tree Buffer Exclusion (TBE), resulting in 35 possibilities for treetop detection. Stem volume for this approach was estimated using the Schumacher and Hall model. Estimated volumes in both ABA and ITD approaches were compared to the field observed values using the F-test. Overall, the ABA with ANN was found to be better for stand volume estimation ( r y y ^ = 0.95 and RMSE = 14.4%). Although the ITD results showed similar precision ( r y y ^ = 0.94 and RMSE = 16.4%) to the ABA, the results underestimated stem volume in younger stands and in gently sloping terrain (<25%). Stem volume maps also differed between the approaches; ITD represented the stand variability better. In addition, we discuss the importance of LiDAR metrics as input variables for stem volume estimation methods and the possible issues related to the ABA and ITD performance.


2017 ◽  
Vol 168 (3) ◽  
pp. 127-133
Author(s):  
Matthew Parkan

Airborne LiDAR data: relevance of visual interpretation for forestry Airborne LiDAR surveys are particularly well adapted to map, study and manage large forest extents. Products derived from this technology are increasingly used by managers to establish a general diagnosis of the condition of forests. Less common is the use of these products to conduct detailed analyses on small areas; for example creating detailed reference maps like inventories or timber marking to support field operations. In this context, the use of direct visual interpretation is interesting, because it is much easier to implement than automatic algorithms and allows a quick and reliable identification of zonal (e.g. forest edge, deciduous/persistent ratio), structural (stratification) and point (e.g. tree/stem position and height) features. This article examines three important points which determine the relevance of visual interpretation: acquisition parameters, interactive representation and identification of forest characteristics. It is shown that the use of thematic color maps within interactive 3D point cloud and/or cross-sections makes it possible to establish (for all strata) detailed and accurate maps of a parcel at the individual tree scale.


1995 ◽  
Vol 25 (11) ◽  
pp. 1783-1794 ◽  
Author(s):  
Thomas B. Lynch

Three basic techniques are proposed for reducing the variance of the stand volume estimate provided by cylinder sampling and Ueno's method. Ueno's method is based on critical height sampling but does not require measurement of critical heights. Instead, a count of trees whose critical heights are less than randomly generated heights is used to estimate stand volume. Cylinder sampling selects sample trees for which randomly generated heights fall within cylinders formed by tree heights and point sampling plot sizes. The methods proposed here for variance reduction in cylinder sampling and Ueno's method are antithetic variates, importance sampling, and control variates. Cylinder sampling without variance reduction was the most efficient of 12 methods compared in computer simulation that used estimated measurement times. However, cylinder sampling requires knowledge of a combined variable individual tree volume equation. Of the three variance reduction techniques applied to Ueno's method, antithetic variates performed best in computer simulation.


2020 ◽  
Vol 12 (3) ◽  
pp. 571 ◽  
Author(s):  
Chen ◽  
Xiang ◽  
Moriya

Information for individual trees (e.g., position, treetop, height, crown width, and crown edge) is beneficial for forest monitoring and management. Light Detection and Ranging (LiDAR) data have been widely used to retrieve these individual tree parameters from different algorithms, with varying successes. In this study, we used an iterative Triangulated Irregular Network (TIN) algorithm to separate ground and canopy points in airborne LiDAR data, and generated Digital Elevation Models (DEM) by Inverse Distance Weighted (IDW) interpolation, thin spline interpolation, and trend surface interpolation, as well as by using the Kriging algorithm. The height of the point cloud was assigned to a Digital Surface Model (DSM), and a Canopy Height Model (CHM) was acquired. Then, four algorithms (point-cloud-based local maximum algorithm, CHM-based local maximum algorithm, watershed algorithm, and template-matching algorithm) were comparatively used to extract the structural parameters of individual trees. The results indicated that the two local maximum algorithms can effectively detect the treetop; the watershed algorithm can accurately extract individual tree height and determine the tree crown edge; and the template-matching algorithm works well to extract accurate crown width. This study provides a reference for the selection of algorithms in individual tree parameter inversion based on airborne LiDAR data and is of great significance for LiDAR-based forest monitoring and management.


2019 ◽  
Vol 11 (1) ◽  
pp. 97 ◽  
Author(s):  
Lin Cao ◽  
Zhengnan Zhang ◽  
Ting Yun ◽  
Guibin Wang ◽  
Honghua Ruan ◽  
...  

Accurate and reliable information on tree volume distributions, which describe tree frequencies in volume classes, plays a key role in guiding timber harvest, managing carbon budgets, and supplying ecosystem services. Airborne Light Detection and Ranging (LiDAR) has the capability of offering reliable estimates of the distributions of structure attributes in forests. In this study, we predicted individual tree volume distributions over a subtropical forest of southeast China using airborne LiDAR data and field measurements. We first estimated the plot-level total volume by LiDAR-derived standard and canopy metrics. Then the performances of three Weibull parameter prediction methods, i.e., parameter prediction method (PPM), percentile-based parameter recover method (PPRM), and moment-based parameter recover method (MPRM) were assessed to estimate the Weibull scale and shape parameters. Stem density for each plot was calculated by dividing the estimated plot total volume using mean tree volume (i.e., mean value of distributions) derived from the LiDAR-estimated Weibull parameters. Finally, the individual tree volume distributions were generated by the predicted scale and shape parameters, and then scaled by the predicted stem density. The results demonstrated that, compared with the general models, the forest type-specific (i.e., coniferous forests, broadleaved forests, and mixed forests) models had relatively higher accuracies for estimating total volume and stem density, as well as predicting Weibull parameters, percentiles, and raw moments. The relationship between the predicted and reference volume distributions showed a relatively high agreement when the predicted frequencies were scaled to the LiDAR-predicted stem density (mean Reynolds error index eR = 31.47–54.07, mean Packalén error index eP = 0.14–0.21). In addition, the predicted individual tree volume distributions predicted by PPRM of (average mean eR = 37.75) performed the best, followed by MPRM (average mean eR = 40.43) and PPM (average mean eR = 41.22). This study demonstrated that the LiDAR can potentially offer improved estimates of the distributions of tree volume in subtropical forests.


Sign in / Sign up

Export Citation Format

Share Document