scholarly journals A new low-power butterfly unit for single-path delay feedback FFT architectures

2013 ◽  
Vol 10 (24) ◽  
pp. 20130640-20130640
Author(s):  
Seung-Won Yang ◽  
Jong-Yeol Lee
Keyword(s):  
Author(s):  
Abdolvahab Khalili Sadaghiani ◽  
Samad Sheikhaei

This paper offers a novel, low-power, hardware-efficient, yet high-frequency architecture for a power spectral density (PSD) estimator, based on the Bartlett method, for low-power biomedical applications. The Bartlett method is a nonparametric method for PSD estimation. The proposed architecture operates based on a modified multiplierless 64-point optimized radix-22 single-path delay feedback (R22SDF) FFT processor. To obtain the final result, it also uses modified safe-scaling in a way that removes the need to use several extra hardware units. It takes advantage of combined coefficient selection and shift-and-add implementation (CCSSI) for computing twiddle factors which is a new algorithm based on digital computer coordinate rotation (CORDIC) for generating trigonometric values. The proposed method has the capability of operating on short word lengths (WLs). Artix-7 is the FPGA used in this research and Verilog is the language used for hardware design. For 8-bit WL and 244-mW power, a frequency of 286 MHz has been achieved. Several vital signals are used for performance comparison of the proposed technique with state-of-the-art designs.


Author(s):  
Periyarselvam K ◽  
Saravanakumar G ◽  
Anand M

Fast Fourier transform (FFT) is widely used in digital signal processing and telecommunications, particularly in orthogonal frequency division multiplexing systems, to overcome the problems associated with orthogonal subcarriers. A new algorithm of radix-3 FFT has been introduced in this work. The DFT of length N can be realized from three DFT sequences; each of length N/3.Radix-3 algorithm reduces the number of multiplications required for realizing DFT.A novel design of Radix-3pipelined Single path Delay Feedback (R3SDF) FFT using MCSLA has been proposed in this paper. First, the pipelined radix-3 SDF FFT method has been designed. It has less area and large power consumption and delay. In order to overcome these problems, modified carry select adder structure is used to perform the adder operation for reducing the power consumption and delay. Finally, the MCSLA is integrated into radix-3 SDF FFT processor. The hardware complexity and execution time for implementing radix-3 FFT algorithm can be reduced than other FFTs.


VLSI technology become one of the most significant and demandable because of the characteristics like device portability, device size, large amount of features, expenditure, consistency, rapidity and many others. Multipliers and Adders place an important role in various digital systems such as computers, process controllers and signal processors in order to achieve high speed and low power. Two input XOR/XNOR gate and 2:1 multiplexer modules are used to design the Hybrid Full adders. The XOR/XNOR gate is the key punter of power included in the Full adder cell. However this circuit increases the delay, area and critical path delay. Hence, the optimum design of the XOR/XNOR is required to reduce the power consumption of the Full adder Cell. So a 6 New Hybrid Full adder circuits are proposed based on the Novel Full-Swing XOR/XNOR gates and a New Gate Diffusion Input (GDI) design of Full adder with high-swing outputs. The speed, power consumption, power delay product and driving capability are the merits of the each proposed circuits. This circuit simulation was carried used cadence virtuoso EDA tool. The simulation results based on the 90nm CMOS process technology model.


2021 ◽  
Author(s):  
Yueduo Liu ◽  
Zihao Zhu ◽  
Rongxin Bao ◽  
Shiheng Yang ◽  
Jiaxin Liu ◽  
...  
Keyword(s):  

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 413 ◽  
Author(s):  
Tuy Nguyen Tan ◽  
Hanho Lee

This paper presents a novel architecture for ring learning with errors (LWE) cryptoprocessors using an efficient approach in encryption and decryption operations. By scheduling multipliers to work in parallel, the encryption and decryption time are significantly reduced. In addition, polynomial multiplications are conducted using radix-2 and radix-8 multiple delay feedback (MDF) architecture-based number theoretic transform (NTT) multipliers to speed up the multiplication operation. To reduce the hardware complexity of an NTT multiplier, three bit-reverse operations during the NTT and inverse NTT (INTT) processes are removed. Polynomial additions in the ring-LWE encryption phase are also arranged to work simultaneously to reduce the latency. As a result, the proposed efficient-scheduling parallel multiplier-based ring-LWE cryptoprocessors can achieve higher throughput and efficiency compared with existing architectures. The proposed ring-LWE cryptoprocessors are synthesized and verified using Xilinx VIVADO on a Virtex-7 field programmable gate array (FPGA) board. With security parameters n = 512 and q = 12,289, the proposed cryptoprocessors using radix-2 single-path delay feedback (SDF), radix-2 MDF, and radix-8 MDF multipliers perform encryption in 4.58 μ s, 1.97 μ s, and 0.89 μ s, and decryption in 4.35 μ s, 1.82 μ s, and 0.71 μ s, respectively. A comparison of the obtained throughput and efficiency with those of previous studies proves that the proposed cryptoprocessors achieve a better performance.


2017 ◽  
Vol 27 (03) ◽  
pp. 1830001 ◽  
Author(s):  
Elango Konguvel ◽  
Muniandi Kannan

The Fast Fourier Transform and Inverse Fast Fourier Transform (FFT/IFFT) are the most significant digital signal processing (DSP) techniques used in Orthogonal Frequency Division Multiplexing (OFDM)-based applications which include day-to-day wired/wireless communications, broadband access, and information sharing. The advancements in telecommunication technologies require an efficient FFT/IFFT processing device to meet the necessary specifications which depend on the particular application. A real-time implementation of high-speed FFT/IFFT processor with less area that operates in minimal power consumption is essential in designing an OFDM integrated chip. A comparative study of efficient algorithms and architectures for FFT chip design is presented in this paper. It is also recommended that mixed-radix/higher-radix algorithm combined with Single-path Delay Commutator (SDC) architecture is appropriate for massive MIMO in 5G, optical OFDM, cooperative MIMO and multi-user MIMO-based applications.


Sign in / Sign up

Export Citation Format

Share Document