Reconfigurable VLSI design of processing kernel for multiple-radix single-path delay feedback FFT systems

Author(s):  
Xin-Yu Shih ◽  
Hong-Ru Chou ◽  
Yue-Qu Liu
Keyword(s):  
Author(s):  
Periyarselvam K ◽  
Saravanakumar G ◽  
Anand M

Fast Fourier transform (FFT) is widely used in digital signal processing and telecommunications, particularly in orthogonal frequency division multiplexing systems, to overcome the problems associated with orthogonal subcarriers. A new algorithm of radix-3 FFT has been introduced in this work. The DFT of length N can be realized from three DFT sequences; each of length N/3.Radix-3 algorithm reduces the number of multiplications required for realizing DFT.A novel design of Radix-3pipelined Single path Delay Feedback (R3SDF) FFT using MCSLA has been proposed in this paper. First, the pipelined radix-3 SDF FFT method has been designed. It has less area and large power consumption and delay. In order to overcome these problems, modified carry select adder structure is used to perform the adder operation for reducing the power consumption and delay. Finally, the MCSLA is integrated into radix-3 SDF FFT processor. The hardware complexity and execution time for implementing radix-3 FFT algorithm can be reduced than other FFTs.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 94
Author(s):  
Abhishek Choubey ◽  
SPV Subbarao ◽  
Shruti B. Choubey

Multiplication is one of the most an essential arithmetic operation used in numerous applications in digital signal processing and communications. These applications need transformations, convolutions and dot products that involve an enormous amount of multiplications of an operand with a constant. Typical examples include wavelet, digital filters, such as FIR or IIR. However, multiplier structures have relatively large area-delay product, long latency and significantly high power consumption compared to other the arithmetic structure. Therefore, low power multiplier design has been always a significant part of DSP structure for VLSI design. The Booth multiplier is promising as the most efficient amongst the others multiplier as it reduces the complexity of considerably than others. In this paper, we have proposed Booth-multiplier using seamless pipelining. Theoretical comparison results show that the proposed Booth multiplier requires less critical path delay compared to traditional Booth multiplier. ASIC simulation results show proposed radix-16 Booth multiplier 13% less critical path delay for word width n=16 and 17% less critical path delay compared for bit width n=32 to best existing radix-16 Booth multiplier. 


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 413 ◽  
Author(s):  
Tuy Nguyen Tan ◽  
Hanho Lee

This paper presents a novel architecture for ring learning with errors (LWE) cryptoprocessors using an efficient approach in encryption and decryption operations. By scheduling multipliers to work in parallel, the encryption and decryption time are significantly reduced. In addition, polynomial multiplications are conducted using radix-2 and radix-8 multiple delay feedback (MDF) architecture-based number theoretic transform (NTT) multipliers to speed up the multiplication operation. To reduce the hardware complexity of an NTT multiplier, three bit-reverse operations during the NTT and inverse NTT (INTT) processes are removed. Polynomial additions in the ring-LWE encryption phase are also arranged to work simultaneously to reduce the latency. As a result, the proposed efficient-scheduling parallel multiplier-based ring-LWE cryptoprocessors can achieve higher throughput and efficiency compared with existing architectures. The proposed ring-LWE cryptoprocessors are synthesized and verified using Xilinx VIVADO on a Virtex-7 field programmable gate array (FPGA) board. With security parameters n = 512 and q = 12,289, the proposed cryptoprocessors using radix-2 single-path delay feedback (SDF), radix-2 MDF, and radix-8 MDF multipliers perform encryption in 4.58 μ s, 1.97 μ s, and 0.89 μ s, and decryption in 4.35 μ s, 1.82 μ s, and 0.71 μ s, respectively. A comparison of the obtained throughput and efficiency with those of previous studies proves that the proposed cryptoprocessors achieve a better performance.


2013 ◽  
Vol 10 (24) ◽  
pp. 20130640-20130640
Author(s):  
Seung-Won Yang ◽  
Jong-Yeol Lee
Keyword(s):  

2017 ◽  
Vol 27 (03) ◽  
pp. 1830001 ◽  
Author(s):  
Elango Konguvel ◽  
Muniandi Kannan

The Fast Fourier Transform and Inverse Fast Fourier Transform (FFT/IFFT) are the most significant digital signal processing (DSP) techniques used in Orthogonal Frequency Division Multiplexing (OFDM)-based applications which include day-to-day wired/wireless communications, broadband access, and information sharing. The advancements in telecommunication technologies require an efficient FFT/IFFT processing device to meet the necessary specifications which depend on the particular application. A real-time implementation of high-speed FFT/IFFT processor with less area that operates in minimal power consumption is essential in designing an OFDM integrated chip. A comparative study of efficient algorithms and architectures for FFT chip design is presented in this paper. It is also recommended that mixed-radix/higher-radix algorithm combined with Single-path Delay Commutator (SDC) architecture is appropriate for massive MIMO in 5G, optical OFDM, cooperative MIMO and multi-user MIMO-based applications.


2012 ◽  
Vol 588-589 ◽  
pp. 826-829
Author(s):  
Xiang Bin Meng ◽  
Jin Xiang Wang ◽  
Hai Long Yan

An attractive technique of variable-length Fast Fourier transform (FFT) processor is proposed for PAPR reduction in orthogonal frequency division multiplexing (OFDM) systems. Mixed-radix algorithm and single path delay feedback (SDF) pipeline architecture is adopted to obtain low computation complexity and preferable flexibility for its VLSI implementation. The FFT processor can be reconfigured as 512, 1024, 2048, 4096-points, moreover, the only one RAM unit is used for store sine/cosine tables. The chip is mapped to the 0.18 CMOS technology and the core area is 7.896mm2. The experiment results show that the proposed FFT processor is suitable for PAPR reduction in OFDM communication systems.


2014 ◽  
Vol 4 (3) ◽  
pp. 88-94
Author(s):  
Nisha Laguri ◽  
◽  
Deepshikha Bharti ◽  
K. Anusudha
Keyword(s):  

This paper presents Single-path Delay Feedback (SDF) architecture for implementing Fast Fourier Transform (FFT) for Multiple-Input Multiple-Output Orthogonal Frequency Division Frequency Multiplexing (MIMO-OFDM). The architecture of Single-path Delay Feedback and memory scheduling are the basic concepts used to implement the FFT processor with variable length. Depending on the SDF architecture, we implement the FFT processor-based design which is proposed in this paper. In this paper, we use MIMOOFDM high data rates, high efficiency and high throughput. In this paper, we use radix-4 algorithm to implement the sequence because the speed of the operation is high. The functionality verification and the synthesis are carried out by using XLINIX.14.2.


Sign in / Sign up

Export Citation Format

Share Document