scholarly journals A new input matching technique for ultra wideband LNAs

2010 ◽  
Vol 7 (18) ◽  
pp. 1376-1381 ◽  
Author(s):  
Mohammad Sadegh Mehrjoo ◽  
Mohammad Yavari
2012 ◽  
Vol 33 (12) ◽  
pp. 125011
Author(s):  
Geliang Yang ◽  
Zhigong Wang ◽  
Zhiqun Li ◽  
Qin Li ◽  
Zhu Li ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ahmed Ragheb ◽  
Ghazal Fahmy ◽  
Iman Ashour ◽  
Abdel Hady Ammar

This paper presents a design of a reconfigurable low noise amplifier (LNA) for multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wideband (UWB) receivers. The proposed design is divided into three stages; the first one is a common gate (CG) topology to provide the input matching over a wideband. The second stage is a programmable circuit to control the mode of operation. The third stage is a current reuse topology to improve the gain, flatness and consume lower power. The proposed LNA is designed using 0.18 μm CMOS technology. This LNA has been designed to operate in two subbands of MB-OFDM UWB, UWB mode-1 and mode-3, as a single or concurrent mode. The simulation results exhibit the power gain up to 17.35, 18, and 11 dB for mode-1, mode-3, and concurrent mode, respectively. The NF is 3.5, 3.9, and 6.5 and the input return loss is better than −12, −13.57, and −11 dB over mode-1, mode-3, and concurrent mode, respectively. This design consumes 4 mW supplied from 1.2 V.


2018 ◽  
Vol 10 (5-6) ◽  
pp. 717-728
Author(s):  
Marco Dietz ◽  
Andreas Bauch ◽  
Klaus Aufinger ◽  
Robert Weigel ◽  
Amelie Hagelauer

AbstractA multi-octave receiver chain is presented for the use in a monolithic integrated vector network analyzer. The receiver exhibits a very wide frequency range of 1–32 GHz, where the gain meets the 3 dB-criterion. The differential receiver consists of an ultra-wideband low noise amplifier, an active mixer and an output buffer and exhibits a maximum conversion gain (CG) of 16.6 dB. The main design goal is a very flat CG over five octaves, which eases calibration of the monolithic integrated vector network analyzer. To realize variable gain functionality, without losing much input matching, an extended gain control circuit with additional feedback branch is shown. For the maximum gain level, a matching better than −10 dB is achieved between 1–28 GHz, and up to 30.5 GHz the matching is better than −8.4 dB. For both, the input matching and the gain of the LNA, the influence of the fabrication tolerances are investigated. A second gain control is implemented to improve isolation. The measured isolations between RF-to-LO and LO-to-RF are better than 30 dB and 60 dB, respectively. The LO-to-IF isolation is better than 35 dB. The noise figure of the broadband receiver is between 4.6 and 5.8 dB for 4–32 GHz and the output referred 1-dB-compression-point varies from 0.1 to 4.3 dBm from 2–32 GHz. The receiver draws a current of max. 66 mA at 3.3 V.


2010 ◽  
Vol 46 (16) ◽  
pp. 1102 ◽  
Author(s):  
C.-P. Liang ◽  
C.-W. Huang ◽  
Y.-K. Lin ◽  
S.-J. Chung

Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 83-93
Author(s):  
Vikram Singh ◽  
Sandeep Kumar Arya ◽  
Manoj Kumar

AbstractA 3–12 GHz ultra-wideband (UWB) low noise amplifier (LNA) is proposed in this paper. The first stage common-gate (CG), common-source (CS) noise canceling approach is used to achieve low noise-figure (NF). CG configuration at the input stage provides wideband input-matching. The noise of CG transistor is cancelled by systematically added two parallel CS transistors, whose outputs are cascoded in second stage. In order to achieve flat power gain (S21) response, a series peaking inductor is used in the second stage. The proposed LNA is designed in 90 nm CMOS process with chip-layout area of 0.467 mm2 and in comparison to the existing LNAs, it consumes a low power of 5.7 mW from a 1 V supply. The achieved input-reflection coefficient (S11) is <−7.5 dB, output-reflection coefficient (S22) is <−7.6 dB with NF < 5.8 dB for 3–12 GHz UWB and third-order intercept point (IIP3) of −19 dBm. It achieves high and flat S21 of 20.84 ± 0.28 dB over 4.2–10 GHz, with NF ranging from 2.6–3.6 dB.


Sign in / Sign up

Export Citation Format

Share Document