scholarly journals Leg Muscle Activation and Distance Setting of the Leg Cycle Ergometer for Use by the Elderly

2014 ◽  
Vol 26 (10) ◽  
pp. 1593-1595 ◽  
Author(s):  
Seon-Chill Kim ◽  
Sang-Yeol Lee ◽  
Young-Ik Lee
2020 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Kyeongjin Lee

This study was conducted to investigate the effects of balance training with electromyogram-triggered functional electrical stimulation (EMG-triggered FES) to improve static balance, dynamic balance, and ankle muscle activation in stroke patients. Forty-nine participants (>6 months after stroke) were randomly assigned to the experimental group (n = 25) and the control group (n = 24). The experimental group underwent balance training with EMG-triggered FES for 40 min a day, 5 days a week, for a 6-week period in addition to general rehabilitation. The control group underwent balance training without EMG-triggered FES along with conventional therapy. Outcome measures included static balance ability, dynamic balance ability, and leg muscle activation. The static and dynamic balance abilities were significantly improved after intervention in both groups (p < 0.05), although the experimental group showed considerably greater improvement than the control group (p < 0.05). Leg muscle activation on the affected side resulted in significant improvements in the experimental group (p < 0.05) when compared with baseline but not in the control group. Balance training with EMG-triggered FES is an acceptable and effective intervention to improve the static balance, dynamic balance, and ankle muscle activation in stroke patients.


1997 ◽  
Vol 83 (2) ◽  
pp. 407-413 ◽  
Author(s):  
Andrew Haskell ◽  
Ethan R. Nadel ◽  
Nina S. Stachenfeld ◽  
Kei Nagashima ◽  
Gary W. Mack

Haskell, Andrew, Ethan R. Nadel, Nina S. Stachenfeld, Kei Nagashima, and Gary W. Mack. Transcapillary escape rate of albumin in humans during exercise-induced hypervolemia. J. Appl. Physiol. 83(2): 407–413, 1997.—To test the hypotheses that plasma volume (PV) expansion 24 h after intense exercise is associated with reduced transcapillary escape rate of albumin (TERalb) and that local changes in transcapillary forces in the previously active tissues favor retention of protein in the vascular space, we measured PV, TERalb, plasma colloid osmotic pressure (COPp), interstitial fluid hydrostatic pressure (Pi), and colloid osmotic pressure in leg muscle and skin and capillary filtration coefficient (CFC) in the arm and leg in seven men and women before and 24 h after intense upright cycle ergometer exercise. Exercise expanded PV by 6.4% at 24 h (43.9 ± 0.8 to 46.8 ± 1.2 ml/kg, P< 0.05) and decreased total protein concentration (6.5 ± 0.1 to 6.3 ± 0.1 g/dl, P < 0.05) and COPp (26.1 ± 0.8 to 24.3 ± 0.9 mmHg, P < 0.05), although plasma albumin concentration was unchanged. TERalb tended to decline (8.4 ± 0.5 to 6.5 ± 0.7%/h, P = 0.11) and was correlated with the increase in PV ( r = −0.69, P < 0.05). CFC increased in the leg (3.2 ± 0.2 to 4.3 ± 0.5 μl ⋅ 100 g−1 ⋅ min−1 ⋅ mmHg−1, P < 0.05), and Pi showed a trend to increase in the leg muscle (2.8 ± 0.7 to 3.8 ± 0.3 mmHg, P = 0.08). These data demonstrate that TERalb is associated with PV regulation and that local transcapillary forces in the leg muscle may favor retention of albumin in the vascular space after exercise.


2019 ◽  
Vol 44 (4) ◽  
pp. 434-442 ◽  
Author(s):  
Paul T. Morgan ◽  
Anni Vanhatalo ◽  
Joanna L. Bowtell ◽  
Andrew M. Jones ◽  
Stephen J. Bailey

Acute acetaminophen (ACT) ingestion has been shown to enhance cycling time-trial performance. The purpose of this study was to assess whether ACT ingestion enhances muscle activation and critical power (CP) during maximal cycling exercise. Sixteen active male participants completed two 3-min all-out tests against a fixed resistance on an electronically braked cycle ergometer 60 min after ingestion of 1 g of ACT or placebo (maltodextrin, PL). CP was estimated as the mean power output over the final 30 s of the test and W′ (the curvature constant of the power–duration relationship) was estimated as the work done above CP. The femoral nerve was stimulated every 30 s to measure membrane excitability (M-wave) and surface electromyography (EMGRMS) was recorded continuously to infer muscle activation. Compared with PL, ACT ingestion increased CP (ACT: 297 ± 32 W vs. PL: 288 ± 31 W, P < 0.001) and total work done (ACT: 66.4 ± 6.5 kJ vs. PL: 65.4 ± 6.4 kJ, P = 0.03) without impacting W′ (ACT: 13.1 ± 2.9 kJ vs. PL: 13.6 ± 2.4 kJ, P = 0.19) or the M-wave amplitude (P = 0.66) during the 3-min all-out cycling test. Normalised EMGRMS amplitude declined throughout the 3-min protocol in both PL and ACT conditions; however, the decline in EMGRMS amplitude was attenuated in the ACT condition, such that the EMGRMS amplitude was greater in ACT compared with PL over the last 60 s of the test (P = 0.04). These findings indicate that acute ACT ingestion might increase performance and CP during maximal cycling exercise by enhancing muscle activation.


2011 ◽  
Vol 110 (3) ◽  
pp. 826-833 ◽  
Author(s):  
Christopher P. Elder ◽  
Ryan N. Cook ◽  
Kenneth L. Wilkens ◽  
Marti A. Chance ◽  
Otto A. Sanchez ◽  
...  

Surface electromyography (EMG) can assess muscle recruitment patterns during cycling, but has limited applicability to studies of deep muscle recruitment and electrically stimulated contractions. We determined whether muscle recruitment timing could be inferred from MRI-measured transverse relaxation time constant (T2) changes and a cycle ergometer modified to vary power as a function of pedal angle. Six subjects performed 6 min of single-leg cycling under two conditions (E0°-230° and E90°-230°), which increased the power from 0°-230° and 90–230° of the pedal cycle, respectively. The difference condition produced a virtual power output from 0–180° (V0°-180°). Recruitment was assessed by integrating EMG over the pedal cycle (IEMG) and as the (post-pre) exercise T2 change (ΔT2). For E0°-230°, the mean IEMG for vastus medialis and lateralis (VM/VL; 49.3 ± 3.9 mV·s; mean ± SE) was greater ( P < 0.05) than that for E90°-230° (17.9 ± 1.9 mV·s); the corresponding ΔT2 values were 8.7 ± 1.0 and 1.4 ± 0.5 ms ( P < 0.05). For E0°-230° and E90°-230°, the IEMG values for biceps femoris/long head (BFL) were 37.7 ± 5.4 and 27.1 ± 5.6 mV·s ( P > 0.05); the corresponding ΔT2 values were 0.9 ± 0.9 and 1.5 ± 0.9 ms ( P > 0.05). MRI data indicated activation of the semitendinosus and BF/short head for E0°-230° and E90°-230°. For V0°-180°, ΔT2 was 7.2 ± 0.9 ms for VM/VL and −0.6 ± 0.6 ms for BFL; IEMG was 31.5 ± 3.7 mV·s for VM/VL and 10.6 ± 7.0 mV·s for BFL. MRI and EMG data indicate VM/VL activity from 0 to 180° and selected hamstring activity from 90 to 230°. Combining ΔT2 measurements with variable loading allows the spatial and temporal patterns of recruitment during cycling to be inferred from MRI data.


2019 ◽  
Author(s):  
Meizhen Huang ◽  
Kit-lun Yick ◽  
Sun-pui Ng ◽  
Joanne Yip ◽  
Roy Cheung

Abstract Background: Diminished somatosensory function and lower plantar cutaneous sensitivity have been identified as a critical age-related change, which is related to postural instability in the older population. Footwear is suggested that can modulate the postural stability by altering the interface between the foot sole and the ground. However, it is unclear whether this footwear effect could also influence lower limb muscle activation for the elderly. This study aimed to investigate the footwear insole texture and supporting surface condition on static postural stability and lower limb muscle activation for healthy older people. Methods: This is a single-session study with repeated measurements. Twenty-three healthy older female stood on the firm (i.e., concrete floor) and foam surfaces with their eyes open in the three footwear conditions, namely barefoot, plain shoes and nodulous insole shoes, for 30 seconds. Static postural sway and muscle activation of biceps femoris (BF), vastus lateralis (VL), tibialis anterior (TA), and lateral gastrocnemius (LG) of the dominant leg were measured during each testing condition. Results: compared to firm surface, standing on the foam could significantly increase the body sway and lower limb muscle activation (p<0.05); compared to barefoot, when standing on the foam, wearing footwear significantly decreased the VL and TA muscle activation and minimize the postural sway in ML and AP direction, while the influence is larger for the nodulous shoes compared to the plain shoes. A positive correlation was observed between the lower limb muscle activation and AP (r=0.327-0.389, p<0.001) and total sway path length (r=0.317-0.427, p<0.001). Conclusions: footwear could improve the postural stability and decease the fall risk comparing to barefoot when the somatosensory input is in disturbance, while the improvement is larger when wearing nodulous insole footwear for the elderly.


SLEEP ◽  
2019 ◽  
Vol 42 (Supplement_1) ◽  
pp. A325-A326
Author(s):  
Guilherme M M Menezes ◽  
Leila A Almeida ◽  
Heidi H Sander ◽  
Regina M F Fernandes ◽  
Álan L Éckeli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document