scholarly journals Occurrence and richness of arbuscular mycorrizal fungi in vineyards with grapevine decline and dieback symptoms

2022 ◽  
Vol 52 (3) ◽  
Author(s):  
Aelton dos Santos Bezerra ◽  
Marcelo Betancur-Agudelo ◽  
Edenilson Meyer ◽  
Karl Kemmelmeier ◽  
Sidney Luiz Stürmer ◽  
...  

ABSTRACT: This research identified arbuscular mycorrhizal fungi (AMF) in rhizosphere soil of grapevines with Grapevine Death and Decline symptoms (GDD) or asymptomatic healthy (H) plants, and characterized the relationship of AMF communities with soil chemical attributes. The AMF spore number ranged from 287 to 432 spores 50 cm-3 in soil with GDD plants, and from 357 to 464 spores 50 cm-3 in H plants, with no differences among vineyards or between GDD and H plants within each vineyard. We detected 42 species and 17 genera, and most taxa belonged to Acaulosporaceae or Glomeraceae. Claroideoglomus etunicatum, Funneliformis mosseae, and Archaeospora trappei were the most frequent species in all vineyards. Soil chemical attributes were not determinant for the occurrence of most fungal species; although, Entrophospora infrequens, Diversispora sp1 and Diversispora sp2 were associated with a vineyard having high soil copper. Vineyards harbor highly diverse AMF communities, which are determined by location.

2014 ◽  
Vol 39 (2) ◽  
pp. 123-138
Author(s):  
Anna Iwaniuk ◽  
Janusz Błaszkowski

This part of the two-part paper of arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota of agricultural soils of the Western Pomerania, north-western Poland, presents the distribution of 26 species of these fungi in both the sites considered in this study and cultivated soils of other regions of Poland and the world investigated previously. The fungi were isolated from both field-collected rhizosphere soil and root mixtures and trap cultures established from each field sample and seeded with three species of plant hosts. Among the fungal species characterized, 18 are of the genus <i>Glomus</i>, one each of the genera <i>Archaeospora, Entrophospora</i> and <i>Paraglomus</i> and three and two of the genera <i>Acaulospora</i> and <i>Scutellospora</i>, respectively.


Author(s):  
Yuying Ma ◽  
Huanchao Zhang ◽  
Daozhong Wang ◽  
Xisheng Guo ◽  
Teng Yang ◽  
...  

Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are critically impacted by fertilization in agricultural ecosystems. Understanding shifts in AMF communities in and around crop roots under different fertilization regimes can provide important lessons for improving agricultural production and sustainability. Here, we compared the responses of AMF communities in the rhizosphere (RS) and root endosphere (ES) of wheat ( Triticum aestivum ) to different fertilization treatments: Non-fertilization (Control), mineral fertilization only (NPK), mineral fertilization plus wheat straw (NPKS), and mineral fertilization plus cow manure (NPKM). We employed high-throughput amplicon sequencing and investigated the diversity, community composition, and network structure of AMF communities to assess their responses to fertilization. Our results elucidated that AMF communities in the RS and ES respond differently to fertilization schemes. Long-term NPK application decreased the RS AMF alpha diversity significantly, whereas additional organic amendments (straw or manure) had no effect. Contrastingly, NPK fertilization increased the ES AMF alpha diversity significantly, while additional organic amendments decreased it significantly. The effect of different fertilization schemes on AMF network complexity in the RS and ES were similar to their effects on alpha diversity. Changes to AMF communities in the RS and ES correlated mainly with the pH and phosphorus level of the rhizosphere soil under long-term inorganic and organic fertilization regimes. We suggest that the AMF community in the roots should be given more consideration when studying the effects of fertilization regimes on AMF in agroecosystems. Importance Arbuscular mycorrhizal fungi are an integral component of rhizospheres, bridging the soil and plant systems and are highly sensitive to fertilization. However, surprisingly little is known about how the response differs between the roots and the surrounding soil. Decreasing arbuscular mycorrhizal fungal diversity under fertilization has been reported, implying a potential reduction in the mutualism between plants and arbuscular mycorrhizal fungi. However, we found opposing responses to long-term fertilization managements of arbuscular mycorrhizal fungi in the wheat roots and rhizosphere soil. These results suggested that changes in the arbuscular mycorrhizal fungal community in soils do not reflect those in the roots, highlighting that the root arbuscular mycorrhizal fungal community is pertinent to understand arbuscular mycorrhizal fungi and their crop hosts’ responses to anthropogenic influences.


2016 ◽  
Vol 82 (11) ◽  
pp. 3348-3356 ◽  
Author(s):  
Maria del Mar Alguacil ◽  
Maria Pilar Torres ◽  
Alicia Montesinos-Navarro ◽  
Antonio Roldán

ABSTRACTWe investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil ofBrachypodium retusumin six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations.IMPORTANCECommunities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors triggering the distribution of AMF. These results contribute to a better understanding of the ecological factors that can shape AMF communities, an important soil microbial group that affects multiple ecosystem functions.


2013 ◽  
Vol 41 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Janusz Błaszczykowski ◽  
Sławomir Kowalczyk ◽  
Beata Czerniawska

Morphological characters of spores of <em>Acaulospora rehmii</em> and <em>Gigaspora margarita</em> (Glomeromycota) were described and illustrated. Spores of the two species were found in field-collected mixtures of rhizosphere soil and roots collected in Poland. Attempts to produce spores in trap cultures succeeded only with <em>G. margarita</em>. All attempts to establish one-species cultures of the two fungi failed. <em>Gigaspora margarita</em> was for the first time found in Poland and this paper is the first report of the occurrence of <em>A. rehmii</em> in Europe. The known distribution of the two fungal species in the world is also presented.


2021 ◽  
Author(s):  
Maede Faghihinia ◽  
Yi Zou ◽  
Yongfei Bai ◽  
Martin Dudáš ◽  
Rob Marrs ◽  
...  

Abstract Arbuscular mycorrhizal fungi (AMF) are the predominant type of mycorrhizal fungi in roots and rhizosphere soil of grass species worldwide. Grasslands are currently experiencing increasing grazing pressure, but it is not yet clear how grazing intensity and host plant grazing preference by large herbivores interact with soil- and root-associated AMF communities. Here, we tested whether the diversity and community composition of AMF in the roots and rhizosphere soil of two dominant perennial grasses grazed differently by livestock change in response to grazing intensity. We conducted a study in a long-term field experiment in which seven levels of field-manipulated grazing intensities were maintained for 13 years in a typical steppe grassland in northern China. We extracted DNA from the roots and rhizosphere soil of two dominant grasses, Leymus chinense (Trin.) Tzvel. and Stipa grandis P. Smirn, with contrasting grazing preference by sheep. AMF DNA from root and soil samples were then subjected to molecular analysis. Our results showed that AMF α-diversity (richness) at the virtual taxa (VT) level varied as a function of grazing intensity. Different VTs showed completely different responses along the gradient, one increasing, one decreasing and others showing no response. Glomeraceae was the most abundant AMF family along the grazing gradient, which fits well with the theory of disturbance tolerance of this group. In addition, sheep grazing preference for host plants did not explain a considerable variation in AMF α-diversity. However, the two grass species exhibited different community composition in their roots and rhizosphere soils. Roots exhibited a lower α-diversity and higher β-diversity within the AMF community than soils. Overall, our results suggest that long-term grazing intensity might have changed the abundance of functionally-diverse AMF taxa in favor of those with disturbance-tolerant traits. We suggest our results would be useful in informing the choice of mycorrhizal fungi indicator variables when assessing the impacts of grassland management choices on grassland ecosystem functioning.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


2020 ◽  
Author(s):  
Helen Maria Cockerton ◽  
Bo Li ◽  
Eleftheria Stavridou ◽  
Abigail Johnson ◽  
Amanda Karlström ◽  
...  

Abstract Background: Phosphate is an essential plant macronutrient required to achieve maximum crop yield. Roots are able to uptake soil phosphate from the immediate root area, thus creating a nutrient depletion zone. Many plants are able to exploit phosphate from beyond this root nutrient depletion zone through symbiotic association with Arbuscular Mycorrhizal Fungi (AMF). Here we characterise the relationship between root architecture, AMF association and low phosphate tolerance in strawberries. The contrasting root architecture in the parental strawberry cultivars ‘Redgauntlet’ and ‘Hapil’ was studied through a mapping population of 168 progeny. Low phosphate tolerance and AMF association was quantified for each genotype to allow assessment of the phenotypic and genotypic relationships between traits. Results: A “phosphate scavenging” root phenotype where individuals exhibit a high proportion of surface lateral roots was associated with a reduction in root system size across genotypes. A genetic correlation between “root system size” traits was observed with a network of pleiotropic QTL were found to represent five “root system size” traits. By contrast, average root diameter and the distribution of roots appeared to be under two discrete methods of genetic control. A total of 18 QTL were associated with plant traits, 4 of which were associated with solidity that explained 46 % of the observed variation. Investigations into the relationship between AMF association and root architecture found that a higher root density was associated with greater AMF colonisation across genotypes. However, no phenotypic correlation or genotypic association was found between low phosphate tolerance and the propensity for AMF association, nor root architectural traits when plants are grown under optimal nutrient conditions.Conclusions: Understanding the genetic relationships underpinning phosphate capture can inform the breeding of strawberry varieties with better nutrient use efficiency. Solid root systems were associated with greater AMF colonisation. However, low P-tolerance was not phenotypically or genotypically associated with root architecture traits in strawberry plants. Furthermore, a trade-off was observed between root system size and root architecture type, highlighting the energetic costs associated with a “phosphate scavenging” root architecture.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Asri Subkhan Mahulette ◽  
Anggra Alfian ◽  
ABDUL KARIM KILKODA ◽  
IMELDA JEANETTE LAWALATA ◽  
DESSY ARIYANI MARASABESSY ◽  
...  

Abstract. Mahulette AS, Alfian A, Kilkoda KA, Lawalata IJ, Marasabessy DA, Tanasale VL, Makaruku MH. 2021. Isolation and identification of indigenous Arbuscular Mycorrhizal Fungi (AMF) of forest clove rhizosphere from Maluku, Indonesia. Biodiversitas 22: 3613-3619. Forest clove is classified as wild-type and endemic to the Maluku (Moluccas) Islands, Indonesia. The different condition of growing areas causes various types of Arbuscular Mycorrhizal Fungi (AMF) associated with forest clove. The study aimed to identify and obtain indigenous AMF inoculums from the forest clove rhizosphere from two distribution areas in Maluku. The results of AMF identification found two types of spores from the genus Glomus in the rhizosphere of forest cloves from Ambon Island with a spore density of 35/50 g of soil. In comparison, three spores were found in Seram Island, two from the genus Scutellospora and one from the Acaulospora. With an overall spore density of 5/50 g of soil. After culture trapping, there was a change in type and an increase in spore density in soil samples from the rhizosphere of the two forest clove distribution areas. Soil samples from Ambon after trapping culture obtained two new types of spores from the genus Acaulospora with a total spore number of 57/50 g soil while in soil samples from Seram found three new types of spores from the genus Glomus with a total spore count of 104/50 g of soil.


Land Science ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. p60
Author(s):  
Hongna Mu ◽  
Lei Fan ◽  
Shaohua Zhu ◽  
Taoze Sun

Arbuscular mycorrhizal fungi(AMF) can promote the absorption of soil water and mineral nutrients, improve photosynthesis, and make host attain higher quality finally by establishing symbiotic relationship between AMF and host root. To improve Tulip gesneriana quality have practical meaning under no bad affect to cultivation soil, in the light of its economical and ecological values. However, some AMF may be diverse from others, the concrete function of AMF on commercial tulip varieties need to explore. Therefore, three different sets of  arbuscular mycorrhizal fungi were inoculated into tulip rhizosphere soil, which were set as 4(Diversispora versiformis), 7(Diversispora spurca) and 1 + 3 + 4 (Rhizophagus intraradias + Funneliformis mosseae + Diversispora versiformis), respectively. The results showed that the activity of most of the measured indices increased, the average root diameter and sucrose content decreased in those three mycorrhizal treatments. Our research provide some theoretical basis for the application of AMF on T.gesneriana ecological cultivation in future.


2014 ◽  
Vol 37 (1-2) ◽  
pp. 39-62 ◽  
Author(s):  
Janusz Błaszkowski ◽  
Iwona Adamska ◽  
Beata Czerniawska

The occurrence of arbuscular mycorrhizal fungi (AMF) of the, phylum <i>Glomeromycota</i> associated with plants of maritime sand dunes of the Vistula Bar localed in north-eastern Poland was investigated. The presence of AMF was revealed based on spores isolated from field-collected root-rhizosphere soil mixtures and two-cycle pot trap cultures established with parts of these mixtures. The mixtures came from under five species in four plant families. Spores of AMF occurred in 54.8% of the field samples and belonged to eight species. Additionally, culturing of root-soil mixtures in trap cultures revealed nine species and three undescribed morphotypes carlier not found in the field samples. Considering the number of records of species and morphotypes in the field samples and trap cultures, the fungal species most frequently occurring in dunes of the Vistula Bar is <i>Scutellospora dipurpurescens</i>, followed by <i>Archaeospora trappei, Glomus laccatum</i>, and <i>Scu. armeniaca</i>. The overall average spore abundance in the field samples is low (4.48, range O-3l in 100g dry soil). The ovcrall average species richness determined based on spores from both the field and trap cultures was 2 l and ranged from 0 lo 7 in 100g dry soil. The plant harbouring the highest number of species of AMF was <i>Festuca rubra</i>. Of the maritime dune sites of Poland examined to date, the species composition of AMF of the Vistula Bar is most similar to that of the Słowiński National Park. When the comparisons included 15 maritime dune areas located outside Poland, the highest similarity occurred in the Vistula Bar/Canada comparison.


Sign in / Sign up

Export Citation Format

Share Document