scholarly journals Weed interference periods in sesame crop

2019 ◽  
Vol 43 ◽  
Author(s):  
Hamurábi Anizio Lins ◽  
Matheus de Freitas Souza ◽  
José Ricardo Tavares de Albuquerque ◽  
Manoel Galdino dos Santos ◽  
Aurélio Paes Barros Júnior ◽  
...  

ABSTRACT The sesame crop (Sesamum indicum L.) is sensitive to competition with weeds because of its low competitiveness that is directly linked to its slow initial growth. The control of weeds in the crop is an essential practice to ensure the high productivity of this oilseed. Therefore, to define the critical period of interference prevention is important to ensure efficiency and low control costs. Factors such as cultivar, environmental conditions, and cultivation system may alter the critical weed interference prevention period (CPWC). Therefore, the objective of this work was to determine the critical weed interference prevention period in two sesame cultivars. The critical weed interference prevention period for sesame cultivars, BRS Seda and CNPA G2, was defined in two years (2016 and 2017). Log-logistic regression of four parameters was used to determine the critical weed interference prevention period. The cultivar CNPA G2 was more competitive compared to the cultivar BRS Seda. The CPWC for BRS Seda was on average 67 and 52 days, whereas for CNPA G2 was 52 and 34 days, considering respectively, a loss of 5 and 10%. Weed control for BRS Seda and CNPA G2 should begin respectively between 12 and 15, and 17 and 20 days, considering a loss of 5 and 10%.

Weed Science ◽  
2014 ◽  
Vol 62 (4) ◽  
pp. 608-618 ◽  
Author(s):  
Martina Keller ◽  
Geoffroy Gantoli ◽  
Jens Möhring ◽  
Christoph Gutjahr ◽  
Roland Gerhards ◽  
...  

The effect of weed interference on corn yield and the critical period for weed control (CPWC) were determined in Germany and Benin. Treatments with weed control starting at different crop growth stages and continuously kept weed-free until harvest represented the “weed-infested interval.” Treatments that were kept weed-free from sowing until different crop growth stages represented the “weed-free interval.” Michaelis–Menten, Gompertz, logistic and log–logistic models were employed to model the weed interference on yield. Cross-validation revealed that the log–logistic model fitted the weed-infested interval data equally well as the logistic and slightly better than the Gompertz model fitted the weed-free interval. For Benin, economic calculations considered yield revenue and cost increase due to mechanical weeding operations. Weeding once at the ten-leaf stage of corn resulted already profitable in three out of four cases. One additional weeding operation may optimize and assure profit. Economic calculations for Germany determined a CPWC starting earlier than the four-leaf stage, challenging the decade-long propagated CPWC for corn. Differences between Germany and Benin are probably due to the higher yields and high costs in Germany. This study provides a straightforward method to implement economic data in the determination of the CPWC for chemical and nonchemical weed control strategies.


2015 ◽  
Vol 43 (2) ◽  
pp. 355-360 ◽  
Author(s):  
Dogan ISIK ◽  
Adem AKCA ◽  
Emine KAYA ALTOP ◽  
Nihat TURSUN ◽  
Husrev MENNAN

Accurate assessment of crop-weed control period is an essential part for planning an effective weed management for cropping systems. Field experiments were conducted during the seasonal growing periods of potato in 2012 and 2013 in Kayseri, Turkey to assess critical period for weed control (CPWC) in potato. A four parameter log-logistic model was used to assist in monitoring and analysing two sets of related, relative crop yield. Data was obtained during the periods of increased weed interference and as a comparison, during weed-free periods. In both years, the relative yield of potato decreased with a longer period of weed-interference whereas increased with increasing length of weed free period. In 2012, the CPWC ranged from 112 to 1014 GDD (Growing Degree Days) which corresponded to 8 to 66 days after crop emergence (DAE) and between 135-958 GDD (10 to 63 DAE) in the following year based on a 5% acceptable yield loss. Weed-free conditions needed to be established as early as the first week after crop emergence and maintained as late as ten weeks after crop emergence to avoid more than 5% yield loss in the potato. The results suggest that CPWC could well assist potato producers to significantly reduce the expense of their weed management programs as well as improving its efficacy.


Weed Science ◽  
1992 ◽  
Vol 40 (3) ◽  
pp. 441-447 ◽  
Author(s):  
Michael R. Hall ◽  
Clarence J. Swanton ◽  
Glenn W. Anderson

Field studies were conducted in southern Ontario to determine the critical period of weed control in grain corn and the influence of weed interference on corn leaf area. The Gompertz and logistic equations were fitted to data representing increasing durations of weed control and weed interference, respectively. The beginning of the critical period varied from the 3- to 14-leaf stages of corn development However, the end of the critical period was less variable and ended on average at the 14-leaf stage. Weed interference reduced corn leaf area by reducing the expanded leaf area of each individual leaf and accelerating senescence of lower leaves. In addition, weed interference up to the 14-leaf stage of corn development impeded leaf expansion and emergence in 1989.


2016 ◽  
Vol 34 (4) ◽  
pp. 721-728 ◽  
Author(s):  
M. PADILHA ◽  
A.A.M. BARROSO ◽  
L.B. CARVALHO ◽  
F.R. COSTA ◽  
S. BIANCO

ABSTRACT The objective was to determine whether a change occurs in the critical period of weed interference prevention in narrow row corn with the use of atrazine and whether there is influence of the herbicide on crop yield components. The treatments consisted of periods without or with an initial weed control (0, 21, 35, 49, 63, 77, and 91 days after emergence), with or without application of atrazine in spikely post-emergence. The experiment was carried out in a 2 x 7 randomized blocks design (with and without weed control and seven periods with three replications). The use or not of atrazine was arranged in a split plot design. The most important weed species were Senecio brasiliensis, Urochloa plantaginea, Conyza bonariensis, Sida rhombifolia, and Solanum spp. Corn yield reduced by 15% and 18% with and without application of atrazine, respectively. The number of grains per spike and corn yield were negatively influenced by coexistence with weeds, while the number of rows per spike, the diameter and length of spike were not affected. Corn yield components were not affected by the use of atrazine. The critical period of weed interference prevention was 35 days without atrazine and 23 days with application of atrazine. There is a reduction of the critical period of weed interference prevention on narrow row corn by using atrazine, with no influence of the herbicide on crop yield.


1999 ◽  
Vol 34 (2) ◽  
pp. 188-193 ◽  
Author(s):  
Francisco Bedmar ◽  
Pablo Manetti ◽  
Gloria Monterubbianesi

Field studies were conducted over 3 years in southeast Buenos Aires, Argentina, to determine the critical period of weed control in maize (Zea mays L.). The treatments consisted of two different periods of weed interference, a critical weed-free period, and a critical time of weed removal. The Gompertz and logistic equations were fitted to relative yields representing the critical weed-free and the critical time of weed removal, respectively. Accumulated thermal units were used to describe each period of weed-free or weed removal. The critical weed-free period and the critical time of weed removal ranged from 222 to 416 and 128 to 261 accumulated thermal units respectively, to prevent yield losses of 2.5%. Weed biomass proved to be inverse to the crop yield for all the years studied. When weeds competed with the crop from emergence, a large increase in weed biomass was achieved 10 days after crop emergence. However, few weed seedlings emerged and prospered after the 5-6 leaf maize stage (10-20 days after emergence).


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 517-526 ◽  
Author(s):  
L. K. Fedoruk ◽  
E. N. Johnson ◽  
S. J. Shirtliffe

Weed control in lentil is difficult because lentil is a poor competitor with weeds and few POST broadleaf herbicides are available. Imadazolinone-tolerant lentils have more herbicide options, but the optimum timing for herbicide application is not known. The critical period of weed control (CPWC) is the period in a crop's life cycle when weeds must be controlled in order to prevent yield loss. The objective of this research was to determine the CPWC for lentil. We made lentil remain weedy or weed-free from 0 to 11 aboveground nodes to investigate the durations of weed interference and weed-free period, respectively. It was found that lentil has a CPWC beginning at the five-node stage and continuing to the 10-node stage. There was an inverse relationship between weed biomass and lentil yield; that is, lentil yield was highest when weed biomass is minimal. We propose that the CPWC begins when weeds start to accumulate significant biomass and ends with crop canopy closure. Therefore, to maximize lentil yields, growers should consider using a POST residual herbicide that can control weeds during the CPWC.


HortScience ◽  
2018 ◽  
Vol 53 (8) ◽  
pp. 1129-1132
Author(s):  
Dennis C. Odero ◽  
Alan L. Wright

Field studies were conducted in 2011 and 2012 in Belle Glade, FL, to evaluate the critical period of weed control (CPWC) in snap bean grown on organic soils in the Everglades Agricultural Area (EAA) of South Florida. Treatments consisting of increasing duration of weed interference and weed-free period were imposed at weekly intervals from 0 to 7 weeks after emergence (WAE) of snap bean. The beginning and end of the CPWC based on 2.5%, 5%, and 10% snap bean acceptable yield loss (AYL) levels were determined by fitting log-logistic and Gompertz models to represent increasing duration of weed interference and weed-free period, respectively. Based on 2.5% yield loss, the CPWC was 7.2 weeks long, beginning 1.2 (cotyledon and unifoliate leaf) and ending 8.4 WAE (mid-pod set, 50% of pods reached maximum length). At 5% yield loss, the CPWC was 5.0 weeks, beginning 1.7 (first to second trifoliate leaf) and ending 6.7 WAE (mid-flower to early pod set, 50% of flowers open and one pod reached maximum length). At 10% yield loss, the CPWC was 3.0 weeks, beginning 2.2 (second trifoliate leaf) and ending 5.2 WAE (early flowering, one open flower). Based on these results, the beginning of CPWC was hastened, whereas the end was delayed at different yield loss levels showing that acceptable weed control in snap bean on organic soils in the EAA is required throughout much of the growing season to minimize yield loss.


2006 ◽  
Vol 20 (4) ◽  
pp. 867-872 ◽  
Author(s):  
Dogan Isik ◽  
Husrev Mennan ◽  
Bekir Bukun ◽  
Ahmet Oz ◽  
Mathieu Ngouajio

Field studies were conducted in 2001 and 2002 in the Black Sea Region of northern Turkey to determine the critical period for weed control (CPWC) in corn and the effects of weed interference on corn height. Treatments of increasing duration of weed interference and weed-free period were imposed at weekly intervals from 0 to 12 wk after crop emergence (WAE). The CPWC was determined with the use of 2.5, 5, and 10% acceptable yield loss levels by fitting logistic and Gompertz equations to relative yield data. With 5% yield loss level, the CPWC was 5 wk, starting at 0.2 WAE and ending at 5.2 WAE, which corresponded to the one- to five-leaf stage of corn. The CPWC increased to 8.9 wk, starting at 0 WAE and ending at 8.9 WAE, at the 2.5% yield loss level. At 10% yield loss level, the CPWC decreased to 1.7 wk, starting at 2.1 WAE and ending at 3.8 WAE.


Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 928-933 ◽  
Author(s):  
Martin M. Williams

The critical period for weed control (CPWC) identifies the phase of the crop growth cycle when weed interference results in unacceptable yield losses; however, the effect of planting date on CPWC is not well understood. Field studies were conducted in 2004 and 2005 at Urbana, IL, to determine CPWC in sweet corn for early May (EARLY) and late-June (LATE) planting dates. A quantitative series of treatments of both increasing duration of interference and length of weed-free period were imposed within each planting-date main plot. The beginning and end of the CPWC, based on 5% loss of marketable ear mass, was determined by fitting logistic and Gompertz equations to the relative yield data representing increasing duration of weed interference and weed-free periods, respectively. Weed interference stressed the crop more quickly and to a greater extent in EARLY, relative to LATE. At a 5% yield-loss level, duration of weed interference for 160 and 662 growing-degree days (GDD) from crop emergence marked the beginning of the CPWC for EARLY and LATE, respectively. When maintained weed-free for 320 and 134 GDD, weeds emerging later caused yield losses of less than 5% for EARLY and LATE, respectively. Weed densities exceeded 85 plants m−2for the duration of the experiments and predominant species included barnyardgrass, common lambsquarters, common purslane, redroot pigweed, and velvetleaf. Weed canopy height and total aboveground weed biomass were 300% and 500% higher, respectively, for EARLY compared with LATE. Interactions between planting date and CPWC indicate the need to consider planting date in the optimization of integrated weed management systems for sweet corn. In this study, weed management in mid-June–planted sweet corn could have been less intensive than early May–planted corn, reducing herbicide use and risk of herbicide carryover to sensitive rotation crops.


1987 ◽  
Vol 67 (2) ◽  
pp. 575-583 ◽  
Author(s):  
S. E. WEAVER ◽  
C. S. TAN

The critical period of weed interference in field-seeded tomatoes (Lycopersicon esculentum L. ’TH 318’) was determined in 1981, 1982 and 1983. The minimum weed-free period varied among years from 7 to 9 wk after sowing, while the maximum weed-infested period varied from 5 to 6 wk after sowing. A minimum of two weed control operations during the critical period was required to prevent yield losses. Reductions in tomato yields were correlated with weed dry weights and could be attributed both to reductions in light levels due to shading and weed competition for water which resulted in stomatal closure.Key words: Competition, critical period, weed, tomato, Lycopersicon esculentum L.


Sign in / Sign up

Export Citation Format

Share Document