scholarly journals Oncogenic circDHTKD1 promotes tumor growth and metastasis of oral squamous cell carcinoma in vitro and in vivo via upregulating miR-326-mediated GAB1

Author(s):  
Zhuangzhi Wu ◽  
Xiaoning He ◽  
Siqi Chen
2020 ◽  
Author(s):  
Hu Zhang ◽  
Enchun Pan ◽  
Ying Zhang ◽  
Chao Zhao ◽  
Qiwei Liu ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRPL34-AS1 in the development and progression of ESCC. Methods: The expression level of lncRPL34-AS1 in ESCC tissues and different cell lines was determined by quantitative real-time PCR (RT-qPCR). Chromatin immunoprecipitation (ChIP) assay was used to evaluate the regulatory effect of histone modification on lncRPL34-AS1. Then, functional experiments in vitro and in vivo were employed to explore the effects of lncRPL34-AS1 on tumor growth and metastasis in ESCC. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between lncRPL34-AS1, miR-575 and ACAA2. In addition, comprehensive identification of RNA binding proteins (ChIRP), mass spectrometry, and RIP assay were used to identify lncRPL34-AS1-interacting proteins.Results: LncRPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. The chromatin immunoprecipitation (ChIP) assays indicated that gain of H3K4me3 and H3K27 acetylation-activated lncRPL34-AS1 was down-regulated in ESCC. Functionally, upregulation of lncRPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, cell cycle progression and induced apoptosis in vitro, whereas knockdown of lncRPL34-AS1 elicited the opposite function. Consistently, overexpression of lncRPL34-AS1 inhibited tumor growth and metastasis in vivo. Mechanistically, lncRPL34-AS1 acted as competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. In addition, protein ALOX12B and CAT resulted direct binding targets of lncRPL34‐AS1 and affected biological process in ESCC. Conclusions: Together, our results reveal a role for lncRPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using lncRPL34-AS1 as a potential biomarker and a therapeutic target for patients with ESCC.


2015 ◽  
Vol 35 (1) ◽  
pp. 89-98 ◽  
Author(s):  
LIN QUE ◽  
DAN ZHAO ◽  
XIU-FA TANG ◽  
JI-YUAN LIU ◽  
XIANG-YU ZHANG ◽  
...  

2016 ◽  
Vol 17 (3) ◽  
pp. 272 ◽  
Author(s):  
Masaaki Yasukawa ◽  
Hisako Fujihara ◽  
Hiroaki Fujimori ◽  
Koji Kawaguchi ◽  
Hiroyuki Yamada ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhou ◽  
Shuhong Zhang ◽  
Zhonghan Min ◽  
Zhongwei Yu ◽  
Huaiwei Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) are implicated in the development of oral squamous cell carcinoma (OSCC). The aim of current research is to elucidate the role and mechanism of circ_0011946 in the functional behaviors of OSCC cells. Methods Circ_0011946, microRNA (miR)-216a-5p, B cell lymphoma-2-like 2 protein (BCL2L2) abundances were exposed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blot. Cell proliferation, migration, invasion and apoptosis were detected by MTT, colony formation assay, transwell, wound-healing and flow cytometry assays, respectively. Target correlation was tested by dual-luciferase reporter and RNA pull-down assays. An in vivo xenograft experiment was employed to investigate the function of circ_0011946 on tumor growth in vivo. Results Circ_0011946 and BCL2L2 levels were increased, while miR-216a-5p level was decreased in OSCC tissues and cells. Circ_0011946 knockdown impeded proliferation, migration, and invasion, but promoted apoptosis in OSCC cells. Circ_0011946 functioned as a sponge for miR-216a-5p, and BCL2L2 was targeted by miR-216a-5p. Besides, miR-216a-5p or BCL2L2 knockdown partly attenuated the inhibitory influences of circ_0011946 silence or miR-216a-5p overexpression on OSCC cell progression. Furthermore, circ_0011946 post-transcriptionally regulated BCL2L2 through sponging miR-216a-5p. Moreover, circ_0011946 knockdown constrained OSCC tumor growth in vivo. Conclusion Circ_0011946 silence repressed OSCC cell proliferation, migration, and invasion, but promoted apoptosis through the regulation of the miR-216a-5p/BCL2L2 axis.


2020 ◽  
Vol 12 (8) ◽  
pp. 1022-1029
Author(s):  
Ming Liu ◽  
Chen Lin ◽  
Xiaoqing Huang ◽  
Yuxiang Lin

Natural flavonoid formononetin (FN) has anticancer effects, but the hydrophobic structure, characteristics of the short half-life in vivo, limiting its clinical wide-ranging application. In this study, FN loaded Pluronic (PF)@folic acid (FA) micelles (FN-PF@FA), were prepared to improve the solubility, bioavailability and targeting. FA coupling PF was prepared by carbodiimide crosslinker chemical method, FN-PF@FA micelles were prepared by modified film hydration method, and compared the antitumor activity of FN loaded micelles with free FN In Vitro. The spherical smooth surface of FN-PF@FA micelles had smaller particle size (112.3±5.3 nm), high encapsulation efficiency (86.14±2.68%), high negative zeta potential (-25.8±0.57 mV), low critical concentration CMC (0.03 mg/mL), and better sustained release profile. In addition, FN-PF@FA micelles have a positive targeting effect on oral squamous cell carcinoma cells (SCC3). In 48 hours, the growth inhibition of 50% (GI50) was 28.6±1.2 μg/mL for FN and 17.4±0.78 μg/mL for FN-PF, the dose dropped by nearly 38.46%. In addition, the GI50 value of FN-PF@FA was 9.5±0.3 μg/mL, 66.43% lower than FN and 44.83% lower than FN-PF. Furthermore, the laser scanning confocal microscopy revealed that the conjugation of FA significantly improves the active targeting ability of micelles. FN-PF@FA micelles have the potential to target the release of anticancer drugs with higher bioavailability, further provides a new avenue for the application of traditional Chinese medicine extract in oral malignant tumor.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Ze-nan Zheng ◽  
Guang-zhao Huang ◽  
Qing-qing Wu ◽  
Heng-yu Ye ◽  
Wei-sen Zeng ◽  
...  

AbstractOral squamous cell carcinoma (OSCC) is the most common oral cancer. The molecular mechanisms of this disease are not fully understood. Our previous studies confirmed that dysregulated function of long non-coding RNA (lncRNA) AC007271.3 was associated with a poor prognosis and overexpression of AC007271.3 promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. However, the underlying mechanisms of AC007271.3 dysregulation remained obscure. In this study, our investigation showed that AC007271.3 functioned as competing endogenous RNA by binding to miR-125b-2-3p and by destabilizing primary miR-125b-2, resulted in the upregulating expression of Slug, which is a direct target of miR-125b-2-3p. Slug also inhibited the expression of E-cadherin but N-cadherin, vimentin, and β-catenin had no obvious change. The expression of AC007271.3 was promoted by the canonical nuclear factor-κB (NF-κB) pathway. Taken together, these results suggested that the classical NF-κB pathway-activated AC007271.3 regulates EMT by miR-125b-2-3p/Slug/E-cadherin axis to promote the development of OSCC, implicating it as a novel potential target for therapeutic intervention in this disease.


Sign in / Sign up

Export Citation Format

Share Document