scholarly journals Virulence genotyping and antimicrobial resistance profiles of Yersinia enterocolitica isolated from meat and meat products in Egypt

Author(s):  
G. A. Younis ◽  
R. M. Elkenany ◽  
H. A. Dowidar

Abstract Pathogenic Yersinia enterocolitica (Y. enterocolitica) is one of the food-borne entero-pathogen responsible for yersiniosis in humans. The purpose of this research was to survey the prevalence, virulence-associated genes, and antimicrobial resistance of Y. enterocolitica isolated from meat and meat product samples in Egypt. Forty-one (5.9%) out of 700- samples of chicken meat, beef, ground beef, and sausage were positive Y. enterocolitica with a high prevalence in chicken meat (12%). Five virulence genes (ail, inv, ystA, ystB, and yadA) were characterized among 41 Y. enterocolitica isolates with variable frequencies. Among the strains tested, the ystB gene was detected with a high percentage (78.1%), followed by inv gene (70.7%), ail gene (14.6%), ystA gene (12.2%), and yadA gene (2.4%). A high resistance rate was estimated to amoxicillin-clavulanic acid (100%), followed by cefazolin (95%), ampicillin (65.9%), and doxycycline (51.2%), whilst a high sensitivity rate was observed to gentamicin and ciprofloxacin (97.6% each). Interestingly, the multidrug resistance was specified in the 70.7% of strains and showing 13 resistance patterns. Based on nucleotide sequence analysis of the 16s rRNA gene, the phylogenetic tree showed the genetic relatedness amongst Y. enterocolitica isolates. These findings highlighted the emergence of virulent and multidrug-resistant pathogenic Y. entrocolitica in retailed meat and meat products in Egypt.

2021 ◽  
Vol 7 (3) ◽  
pp. 172-178
Author(s):  
Serap Coşansu ◽  
Şeyma Şeniz Ersöz

Totally 101 meat and meat product samples obtained from local markets and restaurants were analyzed for incidence and contamination level of Clostridium perfringens. The typical colonies grown anaerobically on Tryptose Sulfite Cycloserine Agar supplemented with 4-Methyliumbelliferyl (MUP) were confirmed by biochemical tests. Forty-eight of the samples (47.5%) were contaminated with C. perfringens. The highest incidence of the pathogen was determined in uncooked meatball samples (72.2%) followed by ground beef samples (61.3%). The incidence of C. perfringens in chicken meat, cooked meat döner, cooked chicken döner and emulsified meat product samples were 33.3, 33.3, 28.6 and 16.7%, respectively. Thirteen out of 101 samples (12.9%) yielded typical colonies on TSC-MUP Agar, but could not be confirmed as C. perfringens. Average contamination levels in sample groups ranged from 8.3 to 1.5×102 cfu/g, with the highest ground beef and the lowest chicken meat.


2020 ◽  
Vol 83 (6) ◽  
pp. 984-990 ◽  
Author(s):  
SUYEON SUL ◽  
MI-JU KIM ◽  
JUNG-MIN LEE ◽  
SUNG-YEON KIM ◽  
HAE-YEONG KIM

ABSTRACT In this study, we developed a rapid on-site detection method by using direct ultrafast PCR coupled with a microfluidic chip to identify the presence of chicken meat in processed ground meat products. Chicken-specific PCR primer targeting mitochondrial 16S rRNA gene was newly designed, and its specificity was confirmed against 17 other animal species and 4 different chicken meat samples from different countries of origin. The sensitivity of the chicken-specific ultrafast PCR was 0.1 pg of chicken DNA. To evaluate the limit of detection of the direct ultrafast PCR method, different percentages of chicken meat mixed with pork or beef were prepared. The limit of detection of the direct ultrafast PCR method for the chicken meat–pork and chicken meat–beef mixtures was 0.1% for both raw meat and autoclaved meat. This method was used for 15 commercialized processed ground meat products. In this method, the target sequence was successfully amplified, and the presence of chicken meat in processed ground meat products was identified within approximately 25 min, including the time for sample preparation. Thus, our study shows that this developed direct ultrafast PCR method is a rapid and accurate method for on-site detection of chicken DNA in commercial food products. HIGHLIGHTS


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Khadigeh Sirghani ◽  
Tayebeh Zeinali ◽  
Abdollah Jamshidi

Poultry meat is one of the most important sources of infection ofYersiniaspp. for humans. The aim of the present study was to evaluate the incidence ofYersinia enterocoliticain chicken meat by using culture method on selective medium and confirmation by PCR assay. Also, biochemical methods were used for biotyping. A total of 100 chicken thigh meat samples were collected randomly from retail outlets in Mashhad, Iran. Samples were enriched in Peptone-Sorbitol-Bile (PSB) broth and then cultured on Cefsulodin-Irgasan-Novobiocin (CIN) agar containing antibiotics supplement. The DNA was extracted from suspected colonies ofYersiniaspp. and then PCR test using specific primers for 16S rRNA gene ofYersinia enterocoliticawas performed. In this study, 30% of chicken meat was contaminated withYersiniaspp. by culture method and 25% of chicken meat was contaminated withYersinia enterocolitica. Biotyping of isolated colonies showed that all of the isolates belonged to biotype 1A. Culture and detection ofYersiniaspp. from food samples traditionally take 4 days. Due to high accuracy and speed of PCR assay, it is a good alternative method for microbiological techniques. In conclusion, poultry meat can act as a source ofY. enterocoliticaand could be considered as a public health hazard.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Zunita Zakaria ◽  
Latiffah Hassan ◽  
Zawiyah Sharif ◽  
Norazah Ahmad ◽  
Rohaya Mohd Ali ◽  
...  

Abstract Background Salmonella is a very important foodborne pathogen causing illness in humans. The emergence of drug-resistant strains also constitutes a serious worry to global health and livestock productivity. This study investigated Salmonella isolates from chicken and chicken meat products using the phenotypic antimicrobial screening as well as the molecular characteristics of Salmonella isolates. Upon serotyping of the isolates, the antimicrobial susceptibility profiling using a panel of 9 commonly used antimicrobials was done. Subsequently, the molecular profiles of all the isolates were further determined using Pulsed Field Gel Electrophoresis (PFGE) and the Whole Genome Multi-Locus Sequence Type (wgMLST) analysis in order to obtain the sequence types. Results The PFGE data was input into FPQuest software, and the dendrogram generated was studied for possible genetic relatedness among the isolates. All the isolates were found to belong to the Salmonella Enteritidis serotype with notable resistance to tetracycline, gentamycin, streptomycin, and sulfadimidine. The S. Enteritidis isolates tested predominantly subtyped into the ST11 and ST1925, which was found to be a single cell variant of ST11. The STs were found to occur in chicken meats, foods, and live chicken cloacal swabs, which may indicate the persistence of the bacteria in multiple foci. Conclusion The data demonstrate the presence of S. Enteritidis among chickens, indicating its preference and reservoir status for enteric Salmonella pathogens.


Author(s):  
Nives Maria Rosa ◽  
Ilaria Dupre ◽  
Elisa Azara ◽  
Carla Maria Longheu ◽  
Sebastiana Tola

Intrammary infections are a major problem for dairy sheep farms, and Streptococcus uberis is one of the main etiological agents of ovine mastitis. Surveys on antimicrobial resistance are still limited in sheep and characterization of isolates is important for acquiring information on resistance and for optimizing therapy. In this study, a sampling of 124 S. uberis isolates collected in Sardinia (Italy) from sheep milk was analysed by multilocus-sequence typing (MLST) and pulsed field gel electrophoresis (PFGE) for genetic relatedness. All isolates were also subjected to antimicrobial susceptibility analysis by the disk diffusion test using a panel of 14 antimicrobials. Resistance genes were detected by PCR assays. MLST analysis revealed that the isolates were grouped into 86 sequence types (STs), of which 73 were new genotypes, indicating a highly diverse population of S. uberis. The most frequently detected lineage was the clonal complex (CC)143, although representing only 13.7% of all characterized isolates. A high level of heterogeneity was also observed among the SmaI PFGE profiles, with 121 unique patterns. Almost all (96.8%) isolates were resistant to at least one antimicrobial, while all exhibited phenotypic susceptibility to oxacillin, amoxicillin-clavulanic acid and ceftiofur. Of the antimicrobials tested, the highest resistance rate was found against streptomycin (93.5%), kanamycin (79.8%) and gentamicin (64.5%), followed by novobiocin (25%) and tetracycline-TE (19.3%). Seventy-four (59.7%) isolates were simultaneously resistant to all aminoglycosides tested. Seventeen isolates (13.7%) exhibited multidrug resistance. All aminoglycosides-resistant isolates were PCR negative for aad-6 and aphA-3’ genes. Among the TE-resistant isolates, the tetM gene was predominant, indicating that the resistance mechanism is mainly mediated by the protection of ribosomes and not through the efflux pump. Three isolates were resistant to erythromycin, and two of them harboured the ermB gene. This is the first study reporting a detailed characterization of the S. uberis strains circulating in Sardinian sheep. Further investigations will be needed to understand the relationships between S. uberis genotypes, mastitis severity, and intra-mammary infection dynamics in the flock, as well as to monitor the evolution of antimicrobial resistance.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1489
Author(s):  
Nives Maria Rosa ◽  
Ilaria Duprè ◽  
Elisa Azara ◽  
Carla Maria Longheu ◽  
Sebastiana Tola

Intramammary infections are a major problem for dairy sheep farms, and Streptococcus uberis is one of the main etiological agents of ovine mastitis. Surveys on antimicrobial resistance are still limited in sheep and characterization of isolates is important for acquiring information on resistance and for optimizing therapy. In this study, a sampling of 124 S. uberis isolates collected in Sardinia (Italy) from sheep milk was analyzed by multilocus-sequence typing (MLST) and pulsed field gel electrophoresis (PFGE) for genetic relatedness. All isolates were also subjected to antimicrobial susceptibility analysis by the disk diffusion test using a panel of 14 antimicrobials. Resistance genes were detected by PCR assays. MLST analysis revealed that the isolates were grouped into 86 sequence types (STs), of which 73 were new genotypes, indicating a highly diverse population of S. uberis. The most frequently detected lineage was the clonal complex (CC)143, although representing only 13.7% of all characterized isolates. A high level of heterogeneity was also observed among the SmaI PFGE profiles, with 121 unique patterns. Almost all (96.8%) isolates were resistant to at least one antimicrobial, while all exhibited phenotypic susceptibility to oxacillin, amoxicillin-clavulanic acid and ceftiofur. Of the antimicrobials tested, the highest resistance rate was found against streptomycin (93.5%), kanamycin (79.8%) and gentamicin (64.5%), followed by novobiocin (25%) and tetracycline-TE (19.3%). Seventy-four (59.7%) isolates were simultaneously resistant to all aminoglycosides tested. Seventeen isolates (13.7%) exhibited multidrug resistance. All aminoglycosides-resistant isolates were PCR negative for aad-6 and aphA-3′ genes. Among the TE-resistant isolates, the tetM gene was predominant, indicating that the resistance mechanism is mainly mediated by the protection of ribosomes and not through the efflux pump. Three isolates were resistant to erythromycin, and two of them harbored the ermB gene. This is the first study reporting a detailed characterization of the S. uberis strains circulating in Sardinian sheep. Further investigations will be needed to understand the relationships between S. uberis genotypes, mastitis severity, and intra-mammary infection dynamics in the flock, as well as to monitor the evolution of antimicrobial resistance.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2641
Author(s):  
Ana Kaić ◽  
Zlatko Janječić ◽  
Silvester Žgur ◽  
Monika Šikić ◽  
Klemen Potočnik

Transglutaminases (TG) are enzymes that improve the functional properties of proteins in meat products, contribute to the strong cohesion of meat without the further need for the addition of sodium chloride or phosphates, and have a positive effect on the texture of the meat product. This study aimed to investigate the physicochemical and sensory attributes of intact and restructured chicken meat supplemented with different TG proportions. The study was conducted on chicken breast meat samples (n = 40) originating from the line Ross 308. The intact samples were separated from the pectoralis major muscle, whereas the rest of the breast meat was ground, divided into equal parts, and supplemented with TG (0.2%; 0.4%; 0.6%; 0.8%; 1%). The intact meat had the highest cooking loss (19.84) when compared to 0.2% (15.51), 0.4% (15.04), 0.6% (14.95), 0.8% (14.95), and 1% (15.79) TG-supplemented meat. The intact meat had greater shear force (16.90) than 0.2% (5.16), 0.4% (5.39), 0.6% (5.16), 0.8% (5.98), and 1% (6.92) TG supplemented meat. There was no difference between intact meat and TG-supplemented meat in color, taste, odor, texture, and overall acceptability (P > 0.05). Therefore, TG supplementation can be used in improving yield and texture of minced chicken meat.


2020 ◽  
Author(s):  
Zunita Zakaria ◽  
Latiffah Hassan ◽  
Zawiyah Sharif ◽  
Norazah Ahmad ◽  
Rohaya Mohd Ali ◽  
...  

Abstract BackgroundSalmonella is a very important food-borne pathogen causing illness in humans. The emergence of drug-resistant strains also constitutes a serious worry to global health and livestock productivity. This study investigated Salmonella isolates from poultry and poultry products using the phenotypic antimicrobial screening as well as the molecular characteristics of Salmonella isolates. Upon serotyping of the isolates, the antimicrobial susceptibility profiling using a panel of 9 commonly used antimicrobials was done. Subsequently, the molecular profiles of all the isolates were further determined using Pulsed Field Gel Electrophoresis (PFGE) and the Whole Genome Multi-Locus Sequence Type (wgMLST) analysis in order to obtain the sequence types. ResultsThe PFGE data was input into FPQuest software, and the dendrogram generated was studied for possible genetic relatedness among the isolates. All the isolates were found to belong to the S. Enteritidis serotype with notable resistance to tetracycline, gentamycin, streptomycin, and sulfadimidine. The S. Enteritidis isolates tested predominantly subtyped into the ST11 and ST1925, which was found to be a single cell variant of ST11. The STs were found to occur in chicken meat, food, and live chicken cloacal swab, which may indicate the persistence of the bacteria in multiple foci. ConclusionThe data demonstrate the presence of S. Enteritidis among chicken, indicating its preference and reservoir status for enteric salmonella pathogens.


2020 ◽  
Vol 16 (2) ◽  
pp. 170-175
Author(s):  
Maryam Farshidi ◽  
Reza Mohammadi ◽  
Mohammad Reza Sehatkhah ◽  
Behzad Ebrahimi

Background: Mislabeling of meat products due to their high market values is a food fraud, which can result in economic deception. Currently, a little information on mislabeling is available in Iran. Therefore, the aim of this study was to carry out a market survey on a variety of meat products sold in Iran to investigate mislabeling. Methods: A total of 31 meat product samples were purchased from local retailers including supermarkets and local butchers. These samples included salami (n = 6), hamburger (n = 15) and minced meat (n = 10). Labels claimed that the products only contained beef. DNA was extracted from samples and tested using PCR-RFLP for the presence of chicken traces. Results: Of the 31 meat products, 23 included mislabeling, which substituted low-cost chicken for costly beef. Results showed that six of six salami (100%), nine of 15 hamburger (60%) and eight of ten minced meat (80%) contained chicken meat not listed in ingredient labels. Conclusion: Overall, results from the current study greatly warn consumers on potential economic deception occurring in meat products in Iran. This study helps meat industries to address potentially fraudulent activities and improve sanitary techniques during meat processes.


2020 ◽  
Author(s):  
Wujian Ke ◽  
Dongling Li ◽  
Lai Sze Tso ◽  
Ran Wei ◽  
Yinyuan Lan ◽  
...  

Abstract BackgroundAntimicrobial resistance in M. genitalium is a growing clinical problem. We investigated the presence of mutations for macrolide and fluoroquinolone, two commonly used medical regiments for treatments in China. Our aim is to analyze the prevalence and diversity of mutations among M. genitalium-positive clinical specimens in Guangzhou, Guangdong, south China.MethodsA total of 154 stored M. genitalium positive specimens from men and women attending an STI clinic were tested for macrolide and fluoroquinolone mutations. M. genitalium was detected via TaqMan MGB real-time PCR with a sensitivity of five genome equivalents (geq)/reaction. Mutations associated with macrolide resistance were detected using primers targeting region V of the 23S rRNA gene. Fluoroquinolone resistant mutations were screened via primers targeting topoisomerase IV (parC) and DNA gyrase (gyrA).Results98.7% (152/154), 95.5% (147/154) and 90.3% (139/154) of M. genitalium positive samples produced sufficient amplicon for detecting resistance mutations in 23S rRNA, gyrA and parC genes, respectively. 66.4% (101/152), 0.7% (1/147) and 77.7% (108/139) samples manifested mutations in 23S rRNA, gyrA and parC genes, respectively. A2072G (59/101, 58.4%) and S83I (79/108, 73.1%) were highly predominating in 23S rRNA and parC genes, respectively. Two sample had amino acid alteration in gyrA (M95I and A96T, respectively). Two sample had two amino acid alterations in parC (S83I + D87Y). 48.6% (67/138) samples harbored both macrolide and fluoroquinolone resistance-associated mutations. The most common combination of mutations was A2072G (23S rRNA) and S83I (parC) (40/67, 59.7%). One sample had three amino acid changes in 23S rRNA, gyrA and parC genes (A2072G + A96T + S83I).ConclusionsThe high antimicrobial resistance rate of M. genitalium shows a worrisome trend in Guangzhou and suggests antimicrobial resistance testing and the development of new antibiotic regimens are crucial.


Sign in / Sign up

Export Citation Format

Share Document