scholarly journals Yield, quality and drought sensitivity of tomato to water deficit during different growth stages

2020 ◽  
Vol 77 (2) ◽  
Author(s):  
Jintao Cui ◽  
Guangcheng Shao ◽  
Jia Lu ◽  
Larona Keabetswe ◽  
Gerrit Hoogenboom
Author(s):  
Magdi A.A. Mousa ◽  
Adel D. Al Qurashi

A field experiment was conducted in 2013 and 2014 at the Agriculture Experimental Station of King Abdulaziz University to study the effects of water deficit treatments at different growth stages on growth, yield and IWUE on cowpea cultivars. Four water deficit treatments were applied T0 (no water deficit), T1 (at vegetative stage), T2 (at flowering and pod setting), T3 (at pod filling), T4 (at vegetative and flowering) and T5 (at flowering and pod filling). The cultivars ‘Balady’ under water deficit T1, T3 and T4 and ‘Cream7’under T1 and T2 produced the highest yield component parameters except number of pods/plant. The highest yield of dry seeds kg/ha was produced by the cultivars ‘Cream7’ under water deficit T1 and T3 and ‘Balady’ under T2. ‘Cream7’ and ‘Balady’ revealed the highest irrigation water use efficiency (IWUE) under water deficit T1, T2 and T4. High seed yield of ‘Balady and ‘Cream7’ can be obtained by applying water deficit at vegetative stage (T1).


2022 ◽  
Vol 262 ◽  
pp. 107407
Author(s):  
Fei Chen ◽  
Ningbo Cui ◽  
Shouzheng Jiang ◽  
Hongping Li ◽  
Yaosheng Wang ◽  
...  

2013 ◽  
Vol 129 ◽  
pp. 152-162 ◽  
Author(s):  
Jinliang Chen ◽  
Shaozhong Kang ◽  
Taisheng Du ◽  
Rangjian Qiu ◽  
Ping Guo ◽  
...  

2011 ◽  
Vol 50 (No. 10) ◽  
pp. 439-446 ◽  
Author(s):  
I. Svobodová ◽  
P. Míša

Spring barley plants were exposed to water stress at different growth stages – from the period after emergence to the beginning of stem elongation, from emergence to the end of anthesis and from the beginning of stem elongation to the end of anthesis in pot experiments. In variants exposed to water deficit from emergence to the end of anthesis and from the beginning of stem elongation to the end of anthesis, effects of foliar fertilizers and Atonik preparation (applied before the growth stage DC 30 or at DC 33) to lower the stress impacts were tested. During the growing season, formation and reduction of tillers, florets per spike and the yield structure at full ripeness were investigated. The water deficit at stem elongation caused a withering out of the established tillers, drought during the formation of the florets reduced their number as well as their development into grains. In the variant where water stress was present to the beginning of stem elongation, the plants were able to compensate for stress implications by productive tillers that developed later (at stem elongation). The previous water deficit did not decrease 1000-grain weight, however protein content in grain increased due to low grain yield per pot. If foliar fertilizers and Atonik were applied before DC 30, a reduction of fertile florets decreased, which led to slight increase in a grain number per spike.


HortScience ◽  
2019 ◽  
Vol 54 (9) ◽  
pp. 1492-1500 ◽  
Author(s):  
Xuelian Jiang ◽  
Yueling Zhao ◽  
Rui Wang ◽  
Sheng Zhao

Greenhouse experiments were conducted in 2017 and 2018 to investigate quantitative relationships between tomato yield parameters and deficit irrigation at different growth stages. Tomato plants received one of three irrigation treatments (full irrigation, 2/3, and 1/3 full irrigation) at flowering and fruit development (stage 2) and at fruit maturation (stage 3); no deficit irrigation treatments were applied at stage 1 during either season. We used linear regression to investigate how well the yield parameters such as whole-plant yield (Y), single-fruit weight (y), fruit diameter (D), and length (L) were correlated with seasonal evapotranspiration (ET) under different deficit irrigation treatments. Six water–yield models (Blank, Jensen, Singh, Stewart, Minhas, and Rao models) were used to predict the tomato yield parameters with deficit irrigation at different growth stages. The results showed that deficit irrigation at each growth stage significantly decreased ET, Y, y, L, and D, but not T1 (2/3 full irrigation at flowering and fruit development). T1 produced higher water use efficiency (WUE) with no significant decrease in yield parameters, indicating that an acceptable balance between high WUE and yield can be obtained with an appropriate water deficit at stage 2. Relative Y, y, D, and L increased linearly as relative seasonal ET increased. Water deficit sensitivity indexes calculated by the six different water–yield models showed that Y, y, D, and L were more sensitive to water deficit at stage 2 than at stage 3. The values of Y calculated by the Minhas and Singh models were similar to the observed values. The Minhas model provided good estimates of L and D, and the Blank model is recommended for calculating y when there is a water deficit at different growth stages. The water–yield models can be used to optimize irrigation water management and provide a sound basis for efficient tomato production.


2007 ◽  
Vol 90 (3) ◽  
pp. 190-196 ◽  
Author(s):  
Fusheng Ma ◽  
Shaozhong Kang ◽  
Fusheng Li ◽  
Jianhua Zhang ◽  
Taisheng Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document