scholarly journals Dynamic compressive behavior in different loading directions of 3D braided composites with different braiding angle

Author(s):  
Zhenhua ZHAO ◽  
Lulu LIU ◽  
Wei CHEN ◽  
Xiong HUANG
2010 ◽  
Vol 97-101 ◽  
pp. 1741-1744
Author(s):  
Qi Jia ◽  
Ya Nan Jiao

This research dealt with the impact properties of glass fiber reinforced composites manufactured from different structures of three-dimensional braided preforms. Three different architectures of the braid structures, 4-Direction, 5-Direction and 6-Direction, were investigated together with three further various braiding angles of each architecture. The effect of architecture and braiding angle parameters upon the impact was examined. Damage morphology of the impacted materials was characterized. It has been found that the parameters affected the damage resistance and tolerance of composites evidently. 6-Directional composites showed higher impact toughness than the others with same braiding angle. Failure of the specimens with small damage area revealed the brittle characteristic of 3D braided composite.


2017 ◽  
Vol 49 (1) ◽  
pp. 198-205 ◽  
Author(s):  
S. Yan ◽  
L. Y. Guo ◽  
J. Y. Zhao ◽  
X. M. Lu ◽  
T. Zeng ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2147
Author(s):  
Shuangqiang Liang ◽  
Qihong Zhou ◽  
Haiyang Mei ◽  
Ge Chen ◽  
Frank Ko

The static and dynamic mechanical performances of notched and un-notched 3D braided composites were studied. The effect of longitudinal laid-in yarn was investigated in comparison with low braiding angle composites. The specimens were fatigue tested for up to millions of cycles, and the residual strength of the samples that survived millions of cycles was tested. The cross-section of the 3D braided specimens was observed after fatigue loading. It was found that the static and fatigue properties of low angle 3D braided behaved better than longitudinally reinforced 3D braided composites. For failure behavior, pure braids contain damage better and show less damage area than the braids with longitudinal yarns under fatigue loading. More cracks occurred in the 3D braided specimen with axial yarn cross-section along the longitudinal and transverse direction.


2021 ◽  
pp. 002199832110539
Author(s):  
Weijie Zhang ◽  
Shibo Yan ◽  
Ying Yan ◽  
Yiding Li

In this paper, a parameterized unit cell model for 3D braided composites considering transverse braiding angle variation is proposed, to assist the mechanical characterization of such materials. According to the geometric characteristics of 3D braided composites, a method for automatically generating textile geometries based on practical braiding parameters, including the main braiding angle, the transverse braiding angle, and the fiber volume fraction, is established and implemented in a CAD software package. In this model, the addition of transverse braiding angle educes a more flexible control of fiber volume fraction distribution, and with the combination of control parameters according to the actual fiber distribution needs of users, it can suggest the appropriate parameters for the unit cell. The generated unit cell models are used in finite element analysis and the results are validated against experiments for a number of 3D braided composites in terms of fiber volume fraction and elastic constants, and good agreement is observed. Based on the parameterized unit cell model, the effects of main braiding parameters on the elastic properties of 3D braided composites are discussed.


2013 ◽  
Vol 387 ◽  
pp. 64-67
Author(s):  
Li Li Jiang ◽  
Xi Bin Wei ◽  
Xun Liu ◽  
Tao Zeng

A numerical model capable of calculating the strength of 3D braided composites is developed, based on the micro-structure of 3D four-directional braided composites and the assumption of the braiding yarn with a helix configuration and ellipse cross-section. The strength of 3D braided composites have been predicted through a finite multiphase element method (FMEM). Comparison was conducted for those from the present model and experiment. The results are in good agreements with the experimental results in the previous literature. The influences of braiding angle on the strength are also studied.


2018 ◽  
Vol 60 (7-8) ◽  
pp. 772-776 ◽  
Author(s):  
Jiayi Liu ◽  
Junmeng Zhou ◽  
Yu Wang ◽  
Jie Mei ◽  
Jialin Liu

2019 ◽  
Vol 171 ◽  
pp. 21-33 ◽  
Author(s):  
Chunwang He ◽  
Jingran Ge ◽  
Dexing Qi ◽  
Jiaying Gao ◽  
Yanfei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document