scholarly journals Path coefficient analysis, a different approach to identify soil quality indicators

Author(s):  
Júlio C. Ramos ◽  
Ildegardis Bertol ◽  
Douglas H. Bandeira ◽  
Fabrício T. Barbosa ◽  
Fernanda Zangiski

ABSTRACT Soil quality indicators related to water erosion reduction can assist with correct soil management. The objective of this research was to identify some variables that could be used as soil quality indicators with the aid of path coefficient analysis in order to reduce water erosion. The research was carried out in the field between May 2011 and April 2013 in southern Brazil on an Inceptisol. The following treatments were studied under simulated rainfall conditions: 1) no-tilled, cultivated and covered by cultural residue of ryegrass (Lolium multiflorum) (HCR); 2) no-tilled, cultivated and covered by crop residue of vetch (Vicia sativa) (HCV); 3) cultivated and scarified soil containing ryegrass roots (HRR); 4) cultivated and scarified soil containing vetch roots (HRV); and 5) bare and chiselled soil (BHR). Eight simulated rainfalls were applied in each treatment. Flow velocity, soil and water losses as well as variables or soil attributes influenced by management were quantified. Path coefficient analysis verified that the coverage, surface roughness, water infiltration rate and total organic carbon have the greatest direct or indirect relationships with soil and water losses or runoff velocity. These variables were indicative of soil quality, particularly its resistance to water erosion. In a rough soil, the total organic carbon, root mass and macroporosity of the soil are more important as indicators for soil resistance to water erosion.

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Melku Dagnachew ◽  
Awdenegest Moges ◽  
Asfaw Kebede ◽  
Adane Abebe

Land degradation is a global negative environmental process that causes the decline in the productivity of land resources’ capacity to perform their functions. Though soil and water conservation (SWC) technologies have been adopted in Geshy subcatchment, their effects on soil quality were limitedly studied. The study was conducted to evaluate the effects SWC measures on soil quality indicators in Geshy subcatchment, Gojeb River Catchment, Ethiopia. A total of 54 soil samples (two treatments–farmlands with and without SWC measures ∗ three slope classes ∗ three terrace positions ∗ three replications) were collected at a depth of 20 cm. Statistical differences in soil quality indicators were analyzed using multivariate analysis of variance (ANOVA) following the general linear model procedure of SPSS Version 20.0 for Windows. Means that exhibited significant differences were compared using Tukey’s honest significance difference at 5% probability level. The studied soils are characterized by low bulk density, slightly acidic with clay and clay loam texture. The results revealed that farmlands with SWC measures had significantly improved soil physical (silt and clay fractions, and volumetric soil water content (VSWC)) and chemical (pH, SOC, TN, C : N ratio, and Av. phosphorus) quality indicators as compared with farmlands without SWC measures. The significantly higher VSWC, clay, SOC, TN, C : N ratio, and Av. P at the bottom slope classes and terrace positions could be attributed to the erosion reduction and deposition effects of SWC measures. Generally, the status of the studied soils is low in SOC contents, TN, C : N ratio, and Av. P (deficient). Thus, integral use of both physical and biological SWC options and agronomic interventions would have paramount importance in improving soil quality for better agricultural production and productivity.


2021 ◽  
Vol 13 (15) ◽  
pp. 8619
Author(s):  
Orestis Kairis ◽  
Chrysoula Aratzioglou ◽  
Athanasios Filis ◽  
Michel van Mol ◽  
Costas Kosmas

The effects of four main practices tillage versus no-tillage, and intensive grazing versus extensive grazing, applied in characteristic agricultural and grazing lands of Crete Island were evaluated in situ using nine soil quality indicators. The following nine representative indicators of soil quality assessment were assessed using the rapid visual assessment methodology adopted at European level in the context of the EU research project iSQAPER: susceptibility to water and wind erosion, surface ponding (under cropping), formation of tillage pan, soil color, soil porosity, soil structure, susceptibility to slaking, infiltration rate, and biodiversity status. These indicators were measured in 48 agricultural field-plots to adequately represent the four above-mentioned practices and the different types of geomorphological patterns existing in the area. Additionally, 38 agricultural fields were sampled in the topsoil to assess cultivation practices (tillage, no-tillage) on soil organic carbon, cation exchange capacity, exchangeable potassium, available phosphorous, and soil aggregate stability. Based on the indicators rating methodology, the appropriate statistical tests were applied and the soils under different managements were characterized in terms of their potential quality and their general agricultural value. The obtained data showed that in agricultural areas, significant differences were detected between tillage and no-tillage management practices for the indicators of soil structure and consistency and infiltration rate. In grazing land, significant differences were found for the soil quality indicators of susceptibility to erosion and infiltration rate for the corresponding practices of intensive and extensive grazing. Organic carbon content, exchangeable potassium content and aggregate stability were greatly affected in tillage versus no-tillage management practices.


2019 ◽  
Vol 45 (2) ◽  
pp. 687 ◽  
Author(s):  
J. Rodrigo-Comino ◽  
A. Keshavarzi ◽  
A. Bagherzadeh ◽  
E.C. Brevik

Several methods have been used to model reality and explain soil pedogenesis and evolution. However, there is a lack of information about which soil properties truly condition soil quality indicators and indices particularly at the pedon scale and at different soil depths to be used in land management planning. Thus, the main goals of this research were: i) to assess differences in soil properties (particle size, saturation point, bulk density, soil organic carbon, pH and electrical conductivity) at different soil depths (0-30 and 30-60 cm); ii) to check their statistical correlation with soil quality indicators (CEC, total N, Olsen-P, available K, exchangeable Na, calcium carbonate equivalent, Fe, Mn, Zn, and Cu); and, iii) to elaborate a soil quality index and maps for each soil layer. To achieve this, forty-eight soil samples were analysed in the laboratory and subjected to statistical analyses by ANOVA, Spearman Rank coefficients and Principal Component Analyses. Finally, a soil quality index was developed based on indicators of sensitivity. The study was conducted in a semiarid catchment in northeast Iran with irrigated farming and well-documented land degradation issues. We found that: i) organic carbon and bulk density were not similar in the topsoil and subsoil; ii) calcium carbonate and sand content conditioned organic carbon content and bulk density; iii) organic carbon showed the highest correlations with soil quality indicators; iv) particle size conditioned cation-exchange capacity; and, v) heavy metals such as Mn and Cu were highly correlated with organic carbon due to non-suitable agricultural practices. Based on the communality analysis to map of soil quality, CEC, Mn, Zn, and Cu had the highest weights (≥0.11) at both depths, coinciding with the same level of relevance in the multivariate analysis. Exchangeable Na, CaCO3, and Fe had the lowest weights (≤0.1) and N, P, and K had intermediate weights (0.1- 0.11). In general, the map of the soil quality index shows a lower soil quality in the subsoil increment than in the topsoil.


2020 ◽  
Vol 111 ◽  
pp. 106042
Author(s):  
Paulina B. Ramírez ◽  
Francisco J. Calderón ◽  
Steven J. Fonte ◽  
Fernando Santibáñez ◽  
Carlos A. Bonilla

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 582
Author(s):  
Jerónimo Salinas ◽  
David Meca ◽  
Fernando del Moral

The short-term responses of soil quality indicators are important for assessing the effects of new management practices and addressing threats to crop yields in greenhouses. The aim of this study was to assess, during three consecutive cropping seasons, the effect of a sustainable management package (CRTMP)—which includes the on-site reuse of greenhouse crop residues and tillage—in comparison with conventional management, based on fertigation only (CMP), on certain biochemical soil quality indicators and crop yields. CRTMP significantly increased (p < 0.05) the values of total organic carbon (TOC), particulate organic carbon (POC), light fraction (LF), water soluble organic carbon (WSOC), and dehydrogenase (DH) and β-glucosidase (GL) activities at a depth of 0–15 cm, as well as the mean concentration of nitrates in the soil solution. In addition, a significant Pearson’s correlation (p < 0.01) found between the indicators suggested a balanced improvement of soil biological activity and nutritional soil state. Nonetheless, the significant (p < 0.05) increases in the mean concentration of chlorides in the soil solution and electrical conductivity (p < 0.05) increased the risk of salinization, which may have affected the concentration of nitrates in the petiole sap and total production in CRTMP, which were significantly lower than in CMP. Nevertheless, the proportion of premium product was significantly higher in CRTMP, while the proportion of non-commercial production decreased.


2015 ◽  
Vol 27 (3) ◽  
pp. 219-232
Author(s):  
Antônio W. O. Rocha Junior ◽  
Guilherme A. H. A. Loureiro ◽  
Quintino R. Araujo ◽  
George A. Sodré ◽  
Arlicélio Q. Paiva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document