scholarly journals Validity of flexicurve for the assessment of spinal flexibility in asymptomatic individuals

2020 ◽  
Vol 33 ◽  
Author(s):  
Marja Bochehin do Valle ◽  
Vinícius Hoffmann Dutra ◽  
Cláudia Tarragô Candotti ◽  
Juliana Adami Sedrez ◽  
Edgar Santiago Wagner Neto ◽  
...  

Abstract Introduction: Spine problems are common, and assessment of spine flexibility provides relevant information; however, alternative evaluation methods need to be validated. Objective: To evaluate the concurrent validity of the Flexicurve using 3D videogrammetry as a reference value to assess spinal flexion and extension in the lumbar and thoracic regions. Method: The consecutive sample consisted of 39 individuals aged between 18 and 50 years. Two consecutive evaluations were performed by the same rater on the same day and at the same location: (1) Flexicurve and (2) 3D videogrammetry. The assessments were performed with the spine in the neutral position, followed by maximum flexion and extension. The range of motion (ROM) in the maximum flexion and extension positions was calculated in MATLAB® and defined as the difference between the maximum flexion or extension angle and that of the neutral position. Statistical analyses used were the Pearson Product-Moment Correlation coefficient, RMS error and Bland-Altman plot (α < 0.05). Results: The ROM between instruments was similar, with high correlations for thoracic flexion (r = 0.751), extension (r = 0.814) and lumbar flexion (r = 0.853), and RMS errors under 8°. The correlation for lumbar extension was moderate (r = 0.613) and the RMS error was more than 10°. The limits of agreement varied between ± 10º and ± 21º. Conclusion: The Flexicurve is valid for assessing maximum flexion and extension of the thoracic spine, and maximum flexion of the lumbar spine. We suggest caution in evaluating the maximum extension of the lumbar spine.

10.2196/14741 ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. e14741
Author(s):  
Inge J M H Caelers ◽  
Toon F M Boselie ◽  
Kim Rijkers ◽  
Wouter L W Van Hemert ◽  
Rob A De Bie ◽  
...  

Background Physiological motion of the lumbar spine is a subject of interest for musculoskeletal health care professionals, as abnormal motion is believed to be related to lumbar conditions and complaints. Many researchers have described ranges of motion for the lumbar spine, but only a few have mentioned specific motion patterns of each individual segment during flexion and extension. These motion patterns mostly comprise the sequence of segmental initiation in sagittal rotation. However, an adequate definition of physiological motion of the lumbar spine is still lacking. The reason for this is the reporting of different ranges of motion and sequences of segmental initiation in previous studies. Furthermore, due to insufficient fields of view, none of these papers have reported on maximum flexion and extension motion patterns of L1 to S1. In the lower cervical spine, a consistent pattern of segmental contributions was recently described. In order to understand physiological motion of the lumbar spine, it is necessary to systematically study motion patterns, including the sequence of segmental contribution, of vertebrae L1 to S1 in healthy individuals during maximum flexion and extension. Objective This study aims to define the lumbar spines’ physiological motion pattern of vertebrae L1, L2, L3, L4, L5, and S1 by determining the sequence of segmental contribution and the sequence of segmental initiation of motion in sagittal rotation of each vertebra during maximum flexion and extension. The secondary endpoint will be exploring the possibility of analyzing the intervertebral horizontal and vertical translation of each vertebra during maximum flexion and extension. Methods Cinematographic recordings will be performed on 11 healthy male participants, aged 18-25 years, without a history of spine problems. Cinematographic flexion and extension recordings will be made at two time points with a minimum 2-week interval in between. Results The study has been approved by the local institutional medical ethical committee (Medical Research Ethics Committee of Zuyderland and Zuyd University of Applied Sciences) on September 24, 2018. Inclusion of participants will be completed in 2020. Conclusions If successful, these physiological motion patterns can be compared with motion patterns of patients with lumbar conditions before or after surgery. Ultimately, researchers may be able to determine differences in biomechanics that can potentially be linked to physical complaints like low back pain. Trial Registration ClinicalTrials.gov NCT03737227; https://clinicaltrials.gov/ct2/show/NCT03737227 International Registered Report Identifier (IRRID) DERR1-10.2196/14741


Spine ◽  
2004 ◽  
Vol 29 (13) ◽  
pp. 1472-1477 ◽  
Author(s):  
Kazuto Watanabe ◽  
Kei Miyamoto ◽  
Takahiro Masuda ◽  
Katsuji Shimizu

2000 ◽  
Vol 5 (3) ◽  
pp. 158-164 ◽  
Author(s):  
S.J. Edmondston ◽  
S. Song ◽  
R.V. Bricknell ◽  
P.A. Davies ◽  
K. Fersum ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2129 ◽  
Author(s):  
Ilaria Buja ◽  
Erika Sabella ◽  
Anna Grazia Monteduro ◽  
Maria Serena Chiriacò ◽  
Luigi De Bellis ◽  
...  

Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.


Author(s):  
Carla Caffarelli ◽  
Maria Dea Tomai Pitinca ◽  
Antonella Al Refaie ◽  
Elena Ceccarelli ◽  
Stefano Gonnelli

Abstract Background Patients with type 2 diabetes (T2DM) have an increased or normal BMD; however fragility fractures represent one of the most important complications of T2DM. Aims This study aimed to evaluate whether the use of the Radiofrequency Echographic multi spectrometry (REMS) technique may improve the identification of osteoporosis in T2DM patients. Methods In a cohort of 90 consecutive postmenopausal elderly (70.5 ± 7.6 years) women with T2DM and in 90 healthy controls we measured BMD at the lumbar spine (LS-BMD), at femoral neck (FN-BMD) and total hip (TH-BMD) using a dual-energy X-ray absorptiometry device; moreover, REMS scans were also carried out at the same axial sites. Results DXA measurements were all higher in T2DM than in non-T2DM women; instead, all REMS measurements were lower in T2DM than in non T2DM women. Moreover, the percentage of T2DM women classified as “osteoporotic”, on the basis of BMD by REMS was markedly higher with respect to those classified by DXA (47.0% vs 28.0%, respectively). On the contrary, the percentage of T2DM women classified as osteopenic or normal by DXA was higher with respect to that by REMS (48.8% and 23.2% vs 38.6% and 14.5%, respectively). T2DM women with fragility fractures presented lower values of both BMD-LS by DXA and BMD-LS by REMS with respect to those without fractures; however, the difference was significant only for BMD-LS by REMS (p < 0.05). Conclusions Our data suggest that REMS technology may represent a useful approach to enhance the diagnosis of osteoporosis in patients with T2DM.


2021 ◽  
pp. 1-7
Author(s):  
Mercè Torra ◽  
Eduard Pujol ◽  
Anna Maiques ◽  
Salvador Quintana ◽  
Roser Garreta ◽  
...  

BACKGROUND: The difference between isokinetic eccentric to concentric strength ratios at high and low velocities (DEC) is a powerful tool for identifying submaximal effort in other muscle groups but its efficiency in terms of the wrist extensors (WE) and flexors (WF) isokinetic effort has hitherto not been studied. OBJECTIVE: The objective of the present study is to examine the usefulness of the DEC for identifying suboptimal wrist extensor and flexor isokinetic efforts. METHODS: Twenty healthy male volunteers aged 20–40 years (28.5 ± 3.2) were recruited. Participants were instructed to exert maximal and feigned efforts, using a range of motion of 20∘ in concentric (C) and eccentric (E) WE and WF modes at two velocities: 10 and 40∘/s. E/C ratios (E/CR) where then calculated and finally DEC by subtracting low velocity E/CR from high velocity ones. RESULTS: Feigned maximal effort DEC values were significantly higher than their maximal effort counterparts, both for WF and WE. For both actions, a DEC cutoff level to detect submaximal effort could be defined. The sensitivity of the DEC was 71.43% and 62.5% for WE ad WF respectively. The specificity was 100% in both cases. CONCLUSION: The DEC may be a valuable parameter for detecting feigned maximal WF and WE isokinetic effort in healthy adults.


2010 ◽  
Vol 103 (1) ◽  
pp. 278-289 ◽  
Author(s):  
W. S. Yu ◽  
H. van Duinen ◽  
S. C. Gandevia

In humans, hand performance has evolved from a crude multidigit grasp to skilled individuated finger movements. However, control of the fingers is not completely independent. Although musculotendinous factors can limit independent movements, constraints in supraspinal control are more important. Most previous studies examined either flexion or extension of the digits. We studied differences in voluntary force production by the five digits, in both flexion and extension tasks. Eleven healthy subjects were instructed either to maximally flex or extend their digits, in all single- and multidigit combinations. They received visual feedback of total force produced by “instructed” digits and had to ignore “noninstructed” digits. Despite attempts to maximally flex or extend instructed digits, subjects rarely generated their “maximal” force, resulting in a “force deficit,” and produced forces with noninstructed digits (“enslavement”). Subjects performed differently in flexion and extension tasks. Enslavement was greater in extension than in flexion tasks ( P = 0.019), whereas the force deficit in multidigit tasks was smaller in extension ( P = 0.035). The difference between flexion and extension in the relationships between the enslavement and force deficit suggests a difference in balance of spillover of neural drive to agonists acting on neighboring digits and focal neural drive to antagonist muscles. An increase in drive to antagonists would lead to more individualized movements. The pattern of force production matches the daily use of the digits. These results reveal a neural control system that preferentially lifts fingers together by extension but allows an individual digit to flex so that the finger pads can explore and grasp.


2014 ◽  
Vol 23 (S1) ◽  
pp. 26-32 ◽  
Author(s):  
Anastasia V. Pavlova ◽  
Judith R. Meakin ◽  
Kay Cooper ◽  
Rebecca J. Barr ◽  
Richard M. Aspden

Spine ◽  
1988 ◽  
Vol 13 (3) ◽  
pp. 309-312 ◽  
Author(s):  
BROCK E. SCHNEBEL ◽  
JAMES W. SIMMONS ◽  
JON CHOWNING ◽  
RON DAVIDSON

Sign in / Sign up

Export Citation Format

Share Document