Limits to the Control of the Human Thumb and Fingers in Flexion and Extension

2010 ◽  
Vol 103 (1) ◽  
pp. 278-289 ◽  
Author(s):  
W. S. Yu ◽  
H. van Duinen ◽  
S. C. Gandevia

In humans, hand performance has evolved from a crude multidigit grasp to skilled individuated finger movements. However, control of the fingers is not completely independent. Although musculotendinous factors can limit independent movements, constraints in supraspinal control are more important. Most previous studies examined either flexion or extension of the digits. We studied differences in voluntary force production by the five digits, in both flexion and extension tasks. Eleven healthy subjects were instructed either to maximally flex or extend their digits, in all single- and multidigit combinations. They received visual feedback of total force produced by “instructed” digits and had to ignore “noninstructed” digits. Despite attempts to maximally flex or extend instructed digits, subjects rarely generated their “maximal” force, resulting in a “force deficit,” and produced forces with noninstructed digits (“enslavement”). Subjects performed differently in flexion and extension tasks. Enslavement was greater in extension than in flexion tasks ( P = 0.019), whereas the force deficit in multidigit tasks was smaller in extension ( P = 0.035). The difference between flexion and extension in the relationships between the enslavement and force deficit suggests a difference in balance of spillover of neural drive to agonists acting on neighboring digits and focal neural drive to antagonist muscles. An increase in drive to antagonists would lead to more individualized movements. The pattern of force production matches the daily use of the digits. These results reveal a neural control system that preferentially lifts fingers together by extension but allows an individual digit to flex so that the finger pads can explore and grasp.

2003 ◽  
Vol 94 (1) ◽  
pp. 259-270 ◽  
Author(s):  
Minoru Shinohara ◽  
Sheng Li ◽  
Ning Kang ◽  
Vladimir M. Zatsiorsky ◽  
Mark L. Latash

The objective of the study is to examine the effects of age and gender on finger coordination. Twelve young (24 ± 8 yr; 6 men and 6 women) and 12 elderly (75 ± 5 yr; 6 men and 6 women) subjects performed single-finger maximal contraction [maximal voluntary contraction (MVC)], four-finger MVC, and four-finger ramp force production tasks by pressing on individual force transducers. A drop in the force of individual fingers during four-finger MVC tasks compared with single-finger MVC tasks (force deficit) was larger, whereas unintended force production by other fingers during single-finger MVC tasks (enslaving) was smaller, in elderly than in young subjects and in women than in men. Force deficit was smaller and enslaving was larger in subjects with higher peak force. During the ramp task, the difference between the variance of total force and the sum of variances of individual forces showed a logarithmic relation to the level of total force, across all subject groups. These findings suggest that indexes of finger coordination scale with force-generating capabilities across gender and age groups.


2010 ◽  
Vol 109 (6) ◽  
pp. 1827-1841 ◽  
Author(s):  
Shweta Kapur ◽  
Vladimir M. Zatsiorsky ◽  
Mark L. Latash

We explored changes in finger interaction in the process of healthy aging as a window into neural control strategies of natural movements. In particular, we quantified the amount of force produced by noninstructed fingers in different directions, the amount of force produced by the instructed finger orthogonally to the task direction, and the strength of multifinger synergies stabilizing the total force magnitude and direction during accurate force production. Healthy elderly participants performed accurate isometric force production tasks in five directions by individual fingers and by all four fingers acting together. Their data were compared with a dataset obtained in a similar earlier study of young subjects. Finger force vectors were measured using six-component force/torque sensors. Multifinger synergies were quantified using the framework of the uncontrolled manifold hypothesis. The elderly participants produced lower force magnitudes by noninstructed fingers and higher force magnitudes by instructed fingers in nontask directions. They showed strong synergies stabilizing the magnitude and direction of the total force vector. However, the synergy indexes were significantly lower than those observed in the earlier study of young subjects. The results are consistent with an earlier hypothesis of preferential weakening of intrinsic hand muscles with age. We interpret the findings as a shift in motor control from synergic to element-based, which may be causally linked to the documented progressive neuronal death at different levels of the neural axis.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Victoria Andersen ◽  
Xu Wang ◽  
Mark de Zee ◽  
Lasse Riis Østergaard ◽  
Maciej Plocharski ◽  
...  

Abstract Background In clinical diagnosis, the maximum motion of a cervical joint is thought to be found at the joint’s end-range and it is this perception that forms the basis for the interpretation of flexion/extension imaging studies. There have however, been representative cases of joints producing their maximum motion before end-range, but this phenomenon is yet to be quantified. Purpose To provide a quantitative assessment of the difference between maximum joint motion and joint end-range in healthy subjects. Secondarily to classify joints into type based on their motion and to assess the proportions of these joint types. Study design This is an observational study. Subject sample Thirty-three healthy subjects participated in the study. Outcome measures Maximum motion, end-range motion and surplus motion (the difference between maximum motion and end-range) in degrees were extracted from each cervical joint. Methods Thirty-three subjects performed one flexion and one extension motion excursion under video fluoroscopy. The motion excursions were divided into 10% epochs, from which maximum motion, end-range and surplus motion were extracted. Surplus motion was then assessed in quartiles and joints were classified into type according to end-range. Results For flexion 48.9% and for extension 47.2% of joints produced maximum motion before joint end-range (type S). For flexion 45.9% and for extension 46.8% of joints produced maximum motion at joint end-range (type C). For flexion 5.2% of joints and for extension 6.1% of joints concluded their motion anti-directionally (type A). Significant differences were found for C2/C3 (P = 0.000), C3/C4 (P = 0.001) and C4/C5 (P = 0.005) in flexion and C1/C2 (P = 0.004), C3/C4 (P = 0.013) and C6/C7 (P = 0.013) in extension when comparing the joint end- range of type C and type S. The average pro-directional (motion in the direction of neck motion) surplus motion was 2.41° ± 2.12° with a range of (0.07° -14.23°) for flexion and 2.02° ± 1.70° with a range of (0.04°-6.97°) for extension. Conclusion This is the first study to categorise joints by type of motion. It cannot be assumed that end-range is a demonstration of a joint’s maximum motion, as type S constituted approximately half of the joints analysed in this study.


2017 ◽  
Vol 118 (6) ◽  
pp. 3152-3164 ◽  
Author(s):  
Sasha Reschechtko ◽  
Mark L. Latash

We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The “inverse piano” device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions.


Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


2021 ◽  
pp. 1-7
Author(s):  
Mercè Torra ◽  
Eduard Pujol ◽  
Anna Maiques ◽  
Salvador Quintana ◽  
Roser Garreta ◽  
...  

BACKGROUND: The difference between isokinetic eccentric to concentric strength ratios at high and low velocities (DEC) is a powerful tool for identifying submaximal effort in other muscle groups but its efficiency in terms of the wrist extensors (WE) and flexors (WF) isokinetic effort has hitherto not been studied. OBJECTIVE: The objective of the present study is to examine the usefulness of the DEC for identifying suboptimal wrist extensor and flexor isokinetic efforts. METHODS: Twenty healthy male volunteers aged 20–40 years (28.5 ± 3.2) were recruited. Participants were instructed to exert maximal and feigned efforts, using a range of motion of 20∘ in concentric (C) and eccentric (E) WE and WF modes at two velocities: 10 and 40∘/s. E/C ratios (E/CR) where then calculated and finally DEC by subtracting low velocity E/CR from high velocity ones. RESULTS: Feigned maximal effort DEC values were significantly higher than their maximal effort counterparts, both for WF and WE. For both actions, a DEC cutoff level to detect submaximal effort could be defined. The sensitivity of the DEC was 71.43% and 62.5% for WE ad WF respectively. The specificity was 100% in both cases. CONCLUSION: The DEC may be a valuable parameter for detecting feigned maximal WF and WE isokinetic effort in healthy adults.


Author(s):  
Bahram Amirshakeri ◽  
Minoo Khalkhali Zavieh ◽  
Mandana Rezaei ◽  
Hakimeh Adigozali

BACKGROUND: Force perception as a contributor to the neuromuscular control of the knee joint may be altered after anterior cruciate ligament (ACL) injury. OBJECTIVE: This study aimed to compare the force perception accuracy in the knee joints of patients with ACL injury and healthy subjects. METHODS: Twenty-six patients with ACL injury and 26 healthy subjects participated in this case-control study. Participants were asked to produce 50% of the maximum voluntary isometric contraction of the knee muscles as a target force and reproduce it in their limbs in flexion and extension directions. RESULTS: There were significant interactions between group and condition as well as group, condition, and limb in the force perception error respectively (P< 0.05). The highest amount of error was seen in the contralateral limb of the ACL injury group when the reference force was produced in the injured limb (P< 0.05). CONCLUSION: The findings revealed that the force perception accuracy in the knee flexor/extensor muscles of individuals with ACL injury is impaired. Moreover, error is most evident when the patient produces force in the injured limb and replicates it in the uninjured limb in both flexion and extension directions. Therefore, the rehabilitation programs should encompass neuromuscular training in both quadriceps and hamstrings after ACL injury.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Giovanni Ciancio ◽  
Stefania Volpinari ◽  
Maria Fotinidi ◽  
Federica Furini ◽  
Ilaria Farina ◽  
...  

Objective. To evaluate the involvement of the bursa located next to the head of the 5th metatarsal bone in patients with psoriatic arthritis (PsA) in comparison with the other seronegative spondyloarthritis (SpA).Methods. All patients with PsA seen during a period of 24 months were enrolled. The control group included healthy subjects and patients with the other SpA. All subjects underwent clinical and ultrasound (US) examination of the lateral surface of the 5th metatarsal.Results. 150 PsA patients (88 M; 62 F), 172 SpA (107 M; 65 F), and 95 healthy controls (58 M; 37 F) were evaluated. Based on clinical and US evaluation, bursitis was diagnosed in 17/150 (11.3%) PsA patients but in none of the SpA (P<0.0001) and healthy (P=0.0002) controls. In detecting bursitis, US was more sensitive than clinical examination, although the difference did not reach statistical significance (P=0.09).Conclusion. The bursa of the 5th metatarsophalangeal joint appears to be involved in PsA more frequently than by chance. If confirmed by other studies, this finding could be considered as a distinctive clinical sign of PsA, useful for differential diagnosis with the other SpA. In asymptomatic patients, US proved to be more sensitive in the detection of bursitis.


1984 ◽  
Vol 13 (1) ◽  
pp. 15-20 ◽  
Author(s):  
C Wagner ◽  
D Drescher

An electronic gravity goniometer was developed for determining the passive range of movement of the MCP joints II, III, IV, and V in the dorso-volar plane by the use of preset torques. Test–retest measurements on 23 healthy subjects between the ages of 18 and 57 demonstrated high intrarater and interrater agreement for determining the total range. In the determination of the amounts of flexion and extension the measurement of the flexion was less reliable. There was overall evidence of a declining tendency of reliability from MCP joint II to MCP joint V, probably caused by different reactions of the joints to repeated measurements. The higher total range of the MCP joints in women was principally caused by a higher range of extension. In the case of men and women the range of MCP joint V was noticeably greater than that of the other three joints. The mobility of the four MCP joints correlates relatively closely as a whole, however, in the case of the non-adjacent joints less closely than with the adjacent joints. Reliability and validity of the examination method were balanced against one another with regard to testing of the biomechanical pre-conditions for manual dexterity.


1980 ◽  
Vol 49 (4) ◽  
pp. 601-608 ◽  
Author(s):  
B. Gothe ◽  
N. S. Cherniack

We examined the effects of expiratory resistive loads of 10 and 18 cmH2O.l-1.s in healthy subjects on ventilation and occlusion pressure responses to CO2, respiratory muscle electromyogram, pattern of breathing, and thoracoabdominal movements. In addition, we compared ventilation and occlusion pressure responses to CO2 breathing elicited by breathing through an inspiratory resistive load of 10 cmH2O.l-1.s to those produced by an expiratory load of similar magnitude. Both inspiratory and expiratory loads decreased ventilatory responses to CO2 and increased the tidal volume achieved at any given level of ventilation. Depression of ventilatory responses to Co2 was greater with the larger than with the smaller expiratory load, but the decrease was in proportion to the difference in the severity of the loads. Occlusion pressure responses were increased significantly by the inspiratory resistive load but not by the smaller expiratory load. However, occlusion pressure responses to CO2 were significantly larger with the greater expiratory load than control. Increase in occlusion pressure observed could not be explained by changes in functional residual capacity or chemical drive. The larger expiratory load also produced significant increases in electrical activity measured during both inspiration and expiration. These results suggest that sufficiently severe impediments to breathing, even when they are exclusively expiratory, can enhance inspiratory muscle activity in conscious humans.


Sign in / Sign up

Export Citation Format

Share Document