scholarly journals CELL DAMAGE AND BIOMASS OF YELLOW PASSION FRUIT UNDER WATER SALINITY AND NITROGEN FERTILIZATION

2020 ◽  
Vol 33 (3) ◽  
pp. 757-765
Author(s):  
JOSÉ ALBERTO CALADO WANDERLEY ◽  
MARCOS ERIC BARBOSA BRITO ◽  
CARLOS ALBERTO VIEIRA DE AZEVEDO ◽  
FRANCISCO DAS CHAGAS SILVA ◽  
FAGNER NOGUEIRA FERREIRA ◽  
...  

ABSTRACT The aimed of this study was to evaluate the attenuating action of nitrogen doses on leaf cell membrane damage, dry biomass production and leaf area in the formation of yellow passion fruit seedlings irrigated with saline water. Treatments were arranged in a randomized block design, in split plots, corresponding to five levels of irrigation water salinity (plot) (ECw) (0.3; 1.0; 1.7; 2.4 and 3.1 dS m-1) and five doses of nitrogen fertilization (subplot) (60; 80; 100; 120 and 140% of 300 mg of N dm-3), which were repeated in five blocks. Plants were grown in pots (Citropote®) with a volume of 3,780 mL, which were filled with a mixture of soil, aged bovine manure and sawmill residue (shaving) in a ratio of 2:1:0.5, respectively. Waters with different levels of salinity were applied from 40 to 85 days after sowing, when the plants were in transplanting conditions. At 85 days after sowing, the percentage of cell damage based on electrolyte leakage, variables of dry biomass, leaf area and specific leaf area were evaluated. Increment in irrigation water salinity reduces the biomass accumulation of yellow passion fruit seedlings; The increase in nitrogen dose did not mitigate the effect of salinity, which reduced cell membrane integrity, making the plant more sensitive.

2020 ◽  
Vol 12 ◽  
pp. e3456
Author(s):  
Alzira Maria de Sousa Silva Neta ◽  
Lauriane Almeida dos Anjos Soares ◽  
Geovani Soares de Lima ◽  
Luderlandio de Andrade Silva ◽  
Fagner Nogueira Ferreira ◽  
...  

This study aimed to evaluate the gas exchanges and growth of the purple passion fruit cultivar ‘BRS Rubi do Cerrado’ as a function of the salinity levels of the irrigation water and nitrogen fertilization. The research was conducted in pots adapted as drainage lysimeters, placed within a plant nursery, using a Regolithic Neosol of sandy texture, in the municipality of Pombal-PB, Brazil. A randomized block design was used, testing five levels of electrical conductivity of irrigation water (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1) associated with four doses of nitrogen (50, 75, 100, and 125% of the recommendation). The irrigation water salinity above 0.3 dS m-1 compromised the leaf area and the relative water content of the purple passion fruit ‘BRS Rubi do Cerrado’. High doses of nitrogen enhance the deleterious effects of irrigation water salinity on stomatal conductance, transpiration, internal CO2 concentration, CO2 assimilation rate, number of leaves, stem diameter, and height of purple passion fruit plants. When waters with salinity levels of up to 1.3 dS m-1 are used, the dose of 125 mg of N kg-1 of soil is recommendation for providing increases in the CO2 assimilation rate of the purple passion fruit ‘BRS Rubi do Cerrado’ at 70 days after sowing (DAS). Water salinity increases electrolyte leakage, regardless of nitrogen doses.


Author(s):  
Elysson M. G. Andrade ◽  
Geovani S. de Lima ◽  
Vera L. A. de Lima ◽  
Saulo S. da Silva ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The study was carried out to evaluate the photosynthetic efficiency and growth of yellow passion fruit, cultivated under different levels of irrigation water salinity and exogenous application of hydrogen peroxide. The experiment was carried out in greenhouse of the Universidade Federal de Campina Grande, PB, Brazil, using drainage lysimeters with capacity for 100 dm3, filled with Entisol of sandy texture. The experimental design was randomized blocks using a 4 x 4 factorial scheme, with three repetitions, corresponding to four water salinity (0.7; 1.4; 2.1 and 2.8 dS m-1) and four concentrations of hydrogen peroxide (0, 20, 40 and 60 µM). The different concentrations of hydrogen peroxide were applied by soaking the seed for a period of 24 h and spraying the leaves on the adaxial and abaxial sides. At 35 days after transplanting, the interaction between water salinity and hydrogen peroxide concentrations did not significantly interfere with plant physiology and growth, except for the number of leaves. The hydrogen peroxide did not cause significant effects on any of the evaluated plant variables. Increasing salinity of irrigation water led to reduction in gas exchanges at 61 and 96 days after transplanting. Water salinity inhibited the CO2 assimilation, transpiration, stomatal conductance, instantaneous carboxylation efficiency and stem diameter of passion fruit plants.


Author(s):  
José A. C. Wanderley ◽  
Carlos A. V. de Azevedo ◽  
Marcos E. B. Brito ◽  
Fagner N. Ferreira ◽  
Mailson A. Cordão ◽  
...  

ABSTRACT The objective of this study was to evaluate the gas exchange of ‘Redondo Amarelo’ passion fruit seedlings under the mitigating action of nitrogen fertilization on the salinity of irrigation water. The experiment was carried out in a greenhouse of the Universidade Federal de Campina Grande (CCTA-UFCG), Campus of Pombal, PB, Brazil, The experimental design was in randomized blocks, split plots, comprising five irrigation water electrical conductivities (plot) (ECw) (0.3; 1.0; 1.7; 2.4 and 3.1 dS m-1) and five doses of nitrogen (subplot) (60; 80; 100; 120 and 140% of 300 mg of N dm-3), in five blocks. Plants were grown in pots (Citropote JKS®) with volume of 3.780 mL, filled with soil, bovine manure, wood shavings in a proportion of 2:1:0.5 (mass basis), respectively. Water with salinity levels was applied in the period from 40 to 85 days after sowing. The internal CO2 concentration, transpiration, stomatal conductance and photosynthesis were measured at 55 and 70 days after sowing. There was an attenuating effect of nitrogen doses at irrigation water electrical conductivities of 1.7 and 2.4 dS m-1 on photosynthesis at 55 DAS. Irrigation water salinity reduces most of the variables evaluated, especially at the highest level studied (3.1 dS m-1).


Irriga ◽  
2016 ◽  
Vol 21 (4) ◽  
pp. 779-795 ◽  
Author(s):  
Sherly Aparecida da Silva Medeiros ◽  
Lourival Ferreira Cavalcante ◽  
Marlene Alexandrina Ferreira Bezerra ◽  
José Adeilson Medeiros do Nascimento ◽  
Francisco Thiago Coelho Bezerra ◽  
...  

ÁGUA SALINA E BIOFERTILIZANTE DE ESTERCO BOVINO NA FORMAÇÃO E QUALIDADE DE MUDAS DE MARACUJAZEIRO AMARELO SHERLY APARECIDA DA SILVA MEDEIROS1; LOURIVAL FERREIRA CAVALCANTE2; MARLENE ALEXANDRINA FERREIRA BEZERRA1; JOSÉ ADEILSON MEDEIROS DO NASCIMENTO3; FRANCISCO THIAGO COELHO BEZERRA4 E STELLA DA SILVA PRAZERES5 1Doutoranda PPGA/CCA/UFPB, email: [email protected][email protected] do PPGA/CCA/UFPB e Pesquisador do INCTSal, Fortaleza, CE. E-mail: [email protected] Professor Dr. IFCE/ Tianguá - CE. Email: [email protected] do PPGA/CCA/UFPB, Areia-PB. Email: bezerra­‑[email protected] Doutoranda do PPGCS/CCA/UFPB, Areia-PB. Email: stella­[email protected]  1 RESUMO No período de janeiro a março de 2013, um experimento foi conduzido, em estufa telada do Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, Brasil, para avaliar os efeitos da salinidade da água de irrigação e esterco líquido fermentado de bovino na formação e qualidade de mudas de maracujazeiro amarelo. O delineamento experimental foi em blocos casualizados, adotando o esquema fatorial 2 x 5 x 2, referente a dois genótipos de maracujazeiro amarelo (genótipo local tradicionalmente cultivado na cidade de Nova Floresta Paraíba, conhecido por Guinezinho e o genótipo BRS Gigante Amarelo), cinco níveis de salinidade da água de irrigação de 0,3; 1,0; 2,0; 3,0 e 4,0 dS m-1, no solo sem e com esterco líquido fermentado de bovino. As variáveis analisadas foram índice de velocidade de emergência, emergência, altura, diâmetro caulinar, área foliar, massa seca da raiz e da parte aérea das mudas e índice de qualidade de Dickson. O biofertilizante líquido de bovino proporcionou a formação de mudas de qualidade adequada ao plantio, em ambos os genótipos de maracujazeiro amarelo, comparadas às obtidas no solo sem o respectivo insumo, independentemente do nível de salinidade das águas de irrigação. Palavras-chave: Passiflora edulis, estresse salino, insumo orgânico.  MEDEIROS, S.A.S; CAVALCANTE, L.F.; BEZERRA, M.A.F.; NASCIMENTO, J.A. M.; BEZERRA, F.T.C; PRAZERES, S.S.SALINE WATER AND BOVINE MANURE BIOFERTILIZER IN THE FORMATION AND QUALITY OF YELLOW PASSION FRUIT SEEDLINGS   2 ABSTRACT                                              During the period of January to March 2013, an experiment was carried out in greenhouse conditions at the Agrarian Sciences Centre, Federal University of Paraíba, Areia municipality, Paraíba State, Brazil, in order to evaluate the effects of irrigation water salinity and liquid fermented cattle manure during formation and quality of yellow passion fruit seedlings. The experimental design was in randomized blocks adopting a factorial design 2 x 5 x 2 referring to two genotypes of yellow passion fruit (Local genotype known as Guinezinho and BRS Yellow Giant genotype), five levels of water salinity irrigation of 0.3; 1.0; 2.0; 3.0 and 4.0 dS m-1 in soil with and without fermented liquid cattle manure. The variables analyzed were emergency speed index, emergency, plants height, stalk diameter, root dry mass and shoot, leaf area, and Dickson quality index. The liquid cattle biofertilizer provided the formation of seedlings with suitable quality for plantation, in both  passion fruit genotypes compared to those obtained on the substrate without biofertilizer, regardless of the salinity of irrigation water. Keywords: Passiflora edulis, salt stress, organic input.


Author(s):  
José A. C. Wanderley ◽  
Carlos A. V. de Azevedo ◽  
Marcos E. B. Brito ◽  
Mailson A. Cordão ◽  
Robson F. de Lima ◽  
...  

ABSTRACT The study aimed to evaluate the mitigating effect of nitrogen (N) on the damages caused by irrigation water salinity, in the production of yellow passion fruit seedlings. A randomized block design in split plots was used, with five levels of irrigation water salinity (plot) (0.3, 1.0, 1.7, 2.4 and 3.1 dS m-1) and five doses of N fertilization (sub-plot) (180, 240, 300, 360 and 420 mg of N dm-3), with five replicates, totaling 125 experimental units, with one plant per plot. The seedlings were produced in 3.780 mL tubes, used as drainage lysimeter, which received a daily irrigation depth based on water balance. Growth and contents of chlorophyll and carotenoids were evaluated at 85 days after sowing. The increase in irrigation water salinity reduced stem diameter, plant height, number of leaves, chlorophyll a, chlorophyll b and total chlorophyll; increasing N doses also led to linear decline in stem diameter and plant height. Application of increasing doses of N did not attenuate the effect of salinity on growth and pigment contents.


2019 ◽  
Vol 40 (2) ◽  
pp. 611 ◽  
Author(s):  
Marlene Alexandrina Ferreira Bezerra ◽  
Walter Esfrain Pereira ◽  
Francisco Thiago Coelho Bezerra ◽  
Lourival Ferreira Cavalcante ◽  
Sherly Aparecida da Silva Medeiros

The poor chemical quality of water, especially in arid and semiarid regions, almost always precludes the practice of irrigated agriculture, thus demanding the adoption of techniques that mitigate the deleterious effects of excess salt on soil and plants. The aim of this research was to evaluate the effectiveness of nitrogen fertilization in mitigating the negative effects of excess salt in irrigation water on the growth of yellow passion fruit seedlings grown in a greenhouse in plastic tubes containing 0.65 dm3 of substrate. The treatments were organized in randomized blocks, in accordance with a 5 × 3 factorial scheme – five electrical conductivities of irrigation water (0.3, 1.0, 2.0, 3.0, and 4.0 dS m?1) combined with three levels of nitrogen fertilizer (no nitrogen fertilization and 150 mg dm?3 of N derived from either ammonium sulfate or urea). Evaluations were performed 80 days after sowing and consisted of measuring the seedling height, stem diameter, number of leaves, leaf area, leaf nitrogen content, leaf concentration of chlorophyll a and b and total chlorophyll, specific leaf area, leaf area ratio, and Dickson quality index. An increase in the electrical conductivity of irrigation water hindered the production of yellow passion fruit seedlings. Nitrogen fertilization, with urea or ammonium sulfate, mitigated the effects of irrigation water salinity and favored the growth and quality of yellow passion fruit seedlings. Yellow passion fruit seedlings with a minimum quality standard (DQI) can be produced with irrigation water with salinity of 1.8 dS m?1, which means they can be considered as moderately sensitive. The higher quality provided by nitrogen to the yellow passion fruit seedlings made them more tolerant to salinity, allowing the use of water with salinity of 2.1 and 2.5 dS m?1 under fertilization with ammonium sulfate and urea, respectively.


Author(s):  
Geovani S. de Lima ◽  
Maria G. da S. Soares ◽  
Lauriane A. dos A. Soares ◽  
Hans R. Gheyi ◽  
Francisco W. A. Pinheiro ◽  
...  

HIGHLIGHTS Potassium does not attenuate the deleterious effects of salt stress on the formation of seedlings of sour passion fruit. Water salinity increases the percentage of cell membrane damage in sour passion fruit seedlings. Salt stress inhibits growth of sour passion fruit but water with up to 3.5 dS m-1 can be used for formation of its seedlings.


Author(s):  
Idelfonso L. Bezerra ◽  
Reginaldo G. Nobre ◽  
Hans R. Gheyi ◽  
Leandro de P. Souza ◽  
Francisco W. A. Pinheiro ◽  
...  

ABSTRACT The aim of this study was to evaluate the growth of grafted guava cv. ‘Paluma’ subjected to different concentrations of salts in irrigation water and nitrogen (N) fertilization. The plants were transplanted to 150 L lysimeters and under field conditions at the Science and Agri-food Technology Center of the Federal University of Campina Grande, in the municipality of Pombal - PB. The experiment was conducted in randomized block design in a 5 x 4 factorial scheme, with three replicates, and the treatments corresponded to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.1; 1.9; 2.7 and 3.5 dS m-1) and four N doses (70, 100, 130 and 160% of the N dose recommended for the crop). The doses equivalent to 100% corresponded to 541.1 mg of N dm-3 of soil. Irrigation water salinity above 0.3 dS m-1 negatively affects the number of leaves, leaf area, stem diameter, dry phytomass of leaves, branches and shoots . A significant interaction between irrigation water salinity and N fertilization was observed only for the number of leaves and leaf area at 120 days after transplanting. N dose above 70% of the recommendation (378.7 mg N dm-3 soil) did not mitigate the deleterious effects caused by salt stress on plant growth.


HortScience ◽  
2017 ◽  
Vol 52 (7) ◽  
pp. 979-985 ◽  
Author(s):  
Rangjian Qiu ◽  
Yuanshu Jing ◽  
Chunwei Liu ◽  
Zaiqiang Yang ◽  
Zhenchang Wang

It has been proved that irrigation with high saline water and leaching fraction (LF) affect crop yield, but the effects of irrigation water salinity (ECiw) and LF on fruit quality remain largely elusive. We therefore investigated the effects of ECiw and LF on the yield, fruit quality, and ion content of hot peppers. An experiment using irrigation water with five levels of salinity (ECiw of 0.9, 1.6, 2.7, 4.7, and 7.0 dS·m−1) and two LFs (0.17 and 0.29) was conducted in a rain shelter. The experiment took the form of a completely randomized block design, and each treatment was replicated four times. We increased the salinity of the irrigation water by adding 1:1 milliequivalent concentrations of NaCl and CaCl2 to a half-strength Hoagland solution. The plants were irrigated for 120% and 140% evapotranspiration, corresponding to an LF of 0.17 and 0.29. Results showed that the total fruit yield decreased significantly with an increase in the ECiw as a result of reduction both in the fresh weight of fruit and the number of fruit per plant. An increase in the ECiw also led to a decrease in the total dry biomass of fruit and plant, as well as decreasing water use efficiency (WUEF). Salinity reduced the appearance of the fruit by both decreasing the length (FL) and maximum width (FMW) of the fruit. However, increased ECiw also improved the taste of the hot peppers by increasing the total soluble solid (TSS) content, as well as adding to their nutritional quality with a higher content of Vitamin C (VC). Their storage quality was also improved because of an improvement in the firmness of the fruit (Fn) as well as a reduction in the fruit water content (FWC). An increase in the LF led to an increase in the total fruit yield, total dry biomass of fruit and plant, and WUEF; it also increased the FWC and VC content, and decreased the FMW and fruit shape index (FSI). The threshold-slope linear response and sigmoidal-sharp models were both a good fit for the measured total fruit yield, and the LF had no significant effect on the model parameters. The relative TSS and Fn increased linearly as the electrical conductivity (EC) of soil-saturated paste extract (ECe) increased, whereas they decreased linearly as the relative seasonal evapotranspiration (ETr) increased regardless of the LFs. The relative FW, FL, and FMW decreased linearly with the increased ECe, and increased linearly with the increased ETr regardless of the LFs. The relative fruit Na+ concentration increased linearly as the ECe increased. The regression correlations between the total fruit yield, fruit quality parameters, ion contents, and ECe or ETr could provide important information for salinity and irrigation water management with a compromise between the hot pepper yield and fruit quality.


Author(s):  
Lauriane A. dos A. Soares ◽  
Sabrina G. de Oliveira ◽  
Geovani S. de Lima ◽  
Pedro D. Fernandes ◽  
Railene H. C. R. Araújo ◽  
...  

HIGHLIGHTS Irrigation water salinity alters gas exchange and biosynthesis of photosynthetic pigments in po-megranate. The reduction in CO2 assimilation in pomegranate plants under salt stress is related to non-stomatal factors. Increasing nitrogen doses increase electrolyte leakage in pomegranate seedlings.


Sign in / Sign up

Export Citation Format

Share Document