scholarly journals Bean yield under irrigation depths and tillage systems

2021 ◽  
Vol 51 ◽  
Author(s):  
Giuliani do Prado ◽  
Adriano Catossi Tinos ◽  
Rafael de Almeida Schiavon ◽  
Denise Mahl

ABSTRACT Yield response data of crops to soil and water management are vital for maximizing profits. This research aimed to evaluate the yield of the ‘IPR Andorinha’ bean cultivar under distinct irrigation depths (0, 25, 48, 100 and 130 % of the net irrigation depth) and tillage systems (no-tillage and conventional tillage), during the Brazilian fall season. The experimental design was in strips with subdivided plots and four replications, with the factor soil management in the plot and irrigation depths in the subplot. No-tillage had an average grain yield 26.5 % higher than that of the conventional tillage. Both the soil management treatments presented a quadratic response (R2 > 90 %) to the irrigation depths applied, and the maximum yields were reached at 63.8 % (y = 2,452 kg ha-1) and 81.8 % (y = 1,789 kg ha-1) of the irrigation depth, respectively for the no-tillage and conventional tillage. However, the irrigation of bean cropped in the Brazilian fall season is not economically feasible for the no-tillage and conventional tillage when the price of the water millimeter is 43.19 and 33.27 times higher than the price of the bean kilogram, respectively, resulting in yields of 1,345.2 and 699.4 kg ha-1.

Irriga ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 465-480
Author(s):  
Giuliani Do Prado ◽  
Adriano Catossi Tinos ◽  
Denise Mahl ◽  
Rafael de Almeida Schiavon

Produtividade do milho irrigado na região do Arenito Caiuá no Noroeste do Paraná     Giuliani do Prado1; Adriano Catossi Tinos1; denise mahl1 e rafael de almeida schiavon1   1 Departamento de Engenharia Agrícola - DEA, Universidade Estadual de Maringá - UEM, Rodovia PR 482, km 45, CEP: 87.820-000, Cidade Gaúcha-PR, Brasil. E-mail: [email protected], [email protected], [email protected], [email protected].     1 RESUMO   Este trabalho foi desenvolvido na Universidade Estadual de Maringá, em Cidade Gaúcha/PR, e objetivou avaliar a produtividade da variedade de milho IPR-164, em diferentes sistemas de cultivo e lâminas de irrigação. O experimento, conduzido entre 01/10/2019 a 10/02/2020, foi estabelecido em faixas, com parcelas subdivididas, quatro repetições e dois tratamentos (sistemas de cultivo e lâminas de irrigação). Nas parcelas, os sistemas de cultivo foram: semeadura convencional e semeadura direta. Nas subparcelas, as lâminas de irrigação (percentual da lâmina líquida - %IL) foram: 0, 30, 63, 100 e 193%. Após a colheita, a produtividade de espigas (com e sem palha) e de grãos na umidade de 20,5 e 13% foram avaliadas. Os resultados mostraram que: 1) o sistema de cultivo não influenciou na produtividade; 2) a produtividade respondeu de forma quadrática às lâminas de irrigação; 3) lâminas próximas a 100% da IL resultaram em produtividades máximas e; 4) a sensibilidade ao déficit hídrico promoveu decréscimos de 20,4% na produtividade. Quando o custo do milímetro de água for 10 vezes maior que o custo do quilograma do milho (umidade 13%), economicamente é mais viável produzir 7.957 kg ha-1 com 60% da IL do que alcançar a produtividade máxima (8.283 kg ha-1).   Palavras-chave: lâminas de irrigação, sistemas de cultivo, déficit hídrico.     Prado, G; Tinos, A. C.; mahl, D; schiavon, R. A. Irrigated corn yield at the Arenito Caiuá region in Northwest of Paraná State, Brazil     2 ABSTRACT   This work was performed at Universidade Estadual de Maringá, in Cidade Gaúcha/PR city, Brazil, and aimed to evaluate the corn variety IPR-164 yield, in different tillage systems and irrigation depths. The experiment, carried out from 10/01/2019 to 10/02/2020, was set in strips design, with subdivided plots, four replications, and two treatments (tillage systems and irrigation depths). In the plots, the tillage systems were: conventional-tillage and no-tillage. In the subplots, the irrigation depths (percentage of the net irrigation depth - %NID), were: 0, 30, 63, 100, and 193%. After harvesting, the data corn ear yield (in-husk and unhusked) and the grain yield with the moisture of 20.5 and 13% were evaluated. The results showed that: 1) the tillage system did not influence the corn yield; 2) corn yield presented a quadratic response to the irrigation depths; 3) irrigation depths close to 100% of NID provided maximum yield; 4) the sensitivity to water deficit led to a 20.4% decrease in corn yield. When the millimeter water cost is 10 times greater than the corn kilogram cost (moisture 13%), it is economically more profitable to produce 7,957 kg ha-1 with 60% of NID than to reach  the maximum yield (8,283 kg ha-1).   Keywords: irrigation depths, tillage systems, water deficit.


2003 ◽  
Vol 60 (3) ◽  
pp. 581-586 ◽  
Author(s):  
Ildegardis Bertol ◽  
Eloy Lemos Mello ◽  
Jean Cláudio Guadagnin ◽  
Almir Luis Vedana Zaparolli ◽  
Marcos Roberto Carrafa

Water erosion causes soil degradation, which is closely related to nutrient losses either in, the soluble form or adsorbed to soil particles, depending mainly on the adopted soil management system. This study was carried out in São José do Cerrito, SC, Brazil, between March 2000 and June 2001. The objective was to quantify available nitrogen, phosphorus, potassium, calcium and magnesium losses in water erosion obtained with simulated rainfall in the following soil management systems: conventional tillage with no-crop (bare soil) (BS), conventional tillage with soybean (CT), reduced tillage with soybean (RT), no tillage with soybean on a desiccated and burned natural pasture (DBNP), and no tillage with soybean on a desiccated natural pasture (DNP). A rotating boom rainfall simulator was used to perform three rainfall tests with constant intensity of 64 mm h-1 and sufficient duration to reach constant runoff rate, on a clayey-loam, well-structured Typic Hapludox, with an average slope of 0.18 m m-1. The first test was carried out five days before soybean emergence and the second and third at 30 and 60 days, respectively. The nutrient concentration in water and total losses of nitrogen, phosphorus, potassium, calcium and magnesium were higher under CT than in the other soil management systems.


2010 ◽  
Vol 45 (12) ◽  
pp. 1331-1341 ◽  
Author(s):  
Homero Bergamaschi ◽  
Genei Antonio Dalmago ◽  
João Ito Bergonci ◽  
Cleusa Adriane Menegassi Bianchi Krüger ◽  
Bruna Maria Machado Heckler ◽  
...  

The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy


2011 ◽  
Vol 35 (6) ◽  
pp. 1985-1994 ◽  
Author(s):  
Carina Rosa Álvarez ◽  
Alejandro Oscar Costantini ◽  
Alfredo Bono ◽  
Miguel Ángel Taboada ◽  
Flavio Hernán Gutiérrez Boem ◽  
...  

One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.


Weed Science ◽  
1980 ◽  
Vol 28 (1) ◽  
pp. 101-104 ◽  
Author(s):  
J. J. Kells ◽  
C. E. Rieck ◽  
R. L. Blevins ◽  
W. M. Muir

Field studies and laboratory analyses were conducted to examine factors affecting degradation of14C-atrazine [2-chloro-4-(ethylamine)-6-(isopropylamino)-s-triazine] under field conditions. The effects of these factors on weed control under no-tillage and conventional tillage systems were also examined. The amount of radioactivity which was unextractable in 90% methanol increased with time following treatment with14C-atrazine. The rate of formation of unextractable14C compounds was greater under no-tillage and increased with decreasing pH. After 14 to 18 days, a greater amount of extractable atrazine was present in areas receiving lime. The degradation of atrazine occurred more rapidly when surface pH was less than 5.0 compared with a pH greater than 6.5. The effect of lime on the amount of parent atrazine present in the soil was directly correlated to its effect on soil pH. Extractable atrazine in the soil 45 days after treatment was significantly correlated with weed control with the greatest effect under no-tillage.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 233-238 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt

Field experiments were conducted to evaluate the interactions of tillage systems with imazaquin and imazethapyr on weed control and soybean injury and yield. Control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail from imazaquin and imazethapyr in conventional tillage was generally equal to or greater than control in no-tillage. However, under limited rainfall, weed control in no-tillage was generally equal to or greater than control in conventional tillage. Reductions in soybean heights due to herbicide treatment were evident in both tillage systems in 1985 and 1986 but not in. Soybean yields were reduced in 1985 from imazaquin at 140, 210, and 250 g/ha and imazethapyr at 105 and 140 g/ha. Yields were not reduced in 1986 and. Imazaquin and imazethapyr appear to provide adequate control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail in conventional and no-till systems.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


2008 ◽  
Vol 98 (2) ◽  
pp. 187-199 ◽  
Author(s):  
M.S. Mkhabela ◽  
A. Madani ◽  
R. Gordon ◽  
D. Burton ◽  
D. Cudmore ◽  
...  

2011 ◽  
Vol 35 (5) ◽  
pp. 1641-1649
Author(s):  
João Carlos de Moraes Sá ◽  
Eduardo Garcia Cardoso ◽  
Clever Briedis ◽  
Ademir de Oliveira Ferreira ◽  
Paulo Rogério Borszowskei ◽  
...  

In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.


2007 ◽  
Vol 95 (1-2) ◽  
pp. 133-148 ◽  
Author(s):  
Katrien Oorts ◽  
Roel Merckx ◽  
Eric Gréhan ◽  
Jérôme Labreuche ◽  
Bernard Nicolardot

Sign in / Sign up

Export Citation Format

Share Document