scholarly journals The combined effect of climate oscillations in producing extremes: the 2020 drought in southern Brazil

RBRH ◽  
2020 ◽  
Vol 25 ◽  
Author(s):  
Alice Marlene Grimm ◽  
Arlan Scortegagna Almeida ◽  
Cesar Augustus Assis Beneti ◽  
Eduardo Alvim Leite

ABSTRACT The 2020 drought in southern Brazil, which culminated in late summer and early autumn (February-March-April), displayed one of the most deficient rainfall totals in such trimester. This period of the year has already been dominated by negative rainfall deviations since the end of the 1990s. This recent drought represents, therefore, a significant worsening in an already unfavorable situation of water availability. Such long-term behavior is due to the combination of opposite phases of two interdecadal oscillations in the sea surface temperature: the positive phase of the Atlantic Multidecadal Oscillation and the negative phase of the Pacific Interdecadal Oscillation. This combination produces variation in the atmospheric basic state that favors less rainfall in southern Brazil at this time of the year and more frequent occurrence of droughts. For an extreme event to occur, it is usually necessary that, in addition to interdecadal oscillations, an interannual oscillation event occurs that also favors drought, such as the events of Central El Niño in 2020 and La Niña in 2009 and 2012, years of droughts in southern Brazil during the same phase combination of the two interdecadal oscillations. Anthropic climate changes can intensify the frequency and intensity of these extreme events.


Author(s):  
Francisco Wellington Martins da Silva ◽  
Cleiton Da Silva Silveira ◽  
Antônio Duarte Marcos Junior ◽  
João Dehon de Araujo Pontes Filho

The Brazilian energetic matrix is predominantly based on hydroelectric plants and its planning is very sensitive to climate variability in different time scales. Natural Affluent Energy (NAE) is an established planning tool to project different scenarios of possible energy production, especially in an integrated system. This work aims to fill a gap between short-term (seasonal/ interannual) and long-term (climate change) planning scales by realizing NAE medium-term projections for the Brazilian National Interconnected System basins. The historical NAE series provided by the National System Operator was used for the years 1931 to 2014. The series was divided into two periods: from 1931 to 2003 for verification, and from 2004 to 2014 for calibration. The Wavelets Auto-Regressive (WAR) model was applied from low- and medium-frequency bands. The band signal was analyzed and the NAE was projected for the years 2014 to 2024. A relationship of the NAE variability with the Pacific Decadal Oscillation (PDO) climate index and the Atlantic Multidecadal Oscillation (AMO) was verified.



2017 ◽  
Vol 49 (1) ◽  
pp. 210-221 ◽  
Author(s):  
Aradhana Yaduvanshi ◽  
Anand Kr Sinha

Abstract The Eastern Indian Gangetic Plains are characterized by a primarily nature-dependent region blessed with an enormous supply of mineral resources. The region is witnessing a rapid transition in its demographic structure because of rapid industrialization. The region provides a classic example of an area which shows a trend reverse to that observed globally, as far as the frequency of extreme precipitation events is concerned. This paper provides a risk characterization of the entire region, based on the empirical behavior shown by data available so far, in addition to predictions based on theory of extreme values. The long-term behavior prediction is made with an aim to provide policy makers ample time and direction to develop suitable disaster prevention measures. The focus is primarily on extremely high rainfall events, their frequency, trend and estimated long-term behavior. The study corroborates the stability assumption behind the Indian monsoon, and also provides an indication of the expected long-term as well as short-term threats. This study provides a unique application of the extreme value theory to help in developing a threat map for a region whose population is known to be highly impacted by any significant deviations from a normal monsoon.



Shore & Beach ◽  
2020 ◽  
pp. 34-43
Author(s):  
Nicole Elko ◽  
Tiffany Roberts Briggs

In partnership with the U.S. Geological Survey Coastal and Marine Hazards and Resources Program (USGS CMHRP) and the U.S. Coastal Research Program (USCRP), the American Shore and Beach Preservation Association (ASBPA) has identified coastal stakeholders’ top coastal management challenges. Informed by two annual surveys, a multiple-choice online poll was conducted in 2019 to evaluate stakeholders’ most pressing problems and needs, including those they felt most ill-equipped to deal with in their day-to-day duties and which tools they most need to address these challenges. The survey also explored where users find technical information and what is missing. From these results, USGS CMHRP, USCRP, ASBPA, and other partners aim to identify research needs that will inform appropriate investments in useful science, tools, and resources to address today’s most pressing coastal challenges. The 15-question survey yielded 134 complete responses with an 80% completion rate from coastal stakeholders such as local community representatives and their industry consultants, state and federal agency representatives, and academics. Respondents from the East, Gulf, West, and Great Lakes coasts, as well as Alaska and Hawaii, were represented. Overall, the prioritized coastal management challenges identified by the survey were: Deteriorating ecosystems leading to reduced (environmental, recreational, economic, storm buffer) functionality, Increasing storminess due to climate change (i.e. more frequent and intense impacts), Coastal flooding, both Sea level rise and associated flooding (e.g. nuisance flooding, king tides), and Combined effects of rainfall and surge on urban flooding (i.e. episodic, short-term), Chronic beach erosion (i.e. high/increasing long-term erosion rates), and Coastal water quality, including harmful algal blooms (e.g. red tide, sargassum). A careful, systematic, and interdisciplinary approach should direct efforts to identify specific research needed to tackle these challenges. A notable shift in priorities from erosion to water-related challenges was recorded from respondents with organizations initially formed for beachfront management. In addition, affiliation-specific and regional responses varied, such as Floridians concern more with harmful algal blooms than any other human and ecosystem health related challenge. The most common need for additional coastal management tools and strategies related to adaptive coastal management to maintain community resilience and continuous storm barriers (dunes, structures), as the top long-term and extreme event needs, respectively. In response to questions about missing information that agencies can provide, respondents frequently mentioned up-to-date data on coastal systems and solutions to challenges as more important than additional tools.



1984 ◽  
Vol 16 (8-9) ◽  
pp. 311-325 ◽  
Author(s):  
N B Johansen ◽  
P Harremoës ◽  
M Jensen

Overflow from combined systems constitute an increasing source of pollution of receiving waters, as compared to daily wastewater discharges which undergo treatment to a still higher extent. The receiving water problems from overflows are significant both in a long term scale (mean annual load) and in a short term scale (extreme event load). A method for computation of both annual and extreme load is presented. It is based on historical rain series and the use of a time-area model and simple pollutant mixing model in runoff calculation. Statistical calculations for both mean annual load and extreme events have been applied to the computed overflow series. Based on the computerized method simple manual calculations methods have been developed, resulting in graphs and tables for annual load and extreme load.



Author(s):  
Lynn M. Grattan ◽  
Laura Kaddis ◽  
J. Kate Tracy ◽  
John Glenn Morris

Domoic acid (DA) is a marine-based neurotoxin that, if ingested via tainted shellfish, is associated with Amnesic Shellfish Poisoning (ASP). These acute effects of elevated DA exposure in humans have been well described. In contrast, the long-term impacts of lower level, repetitive, presumably safe doses of DA (less than 20 ppm) are minimally known. Since Native Americans (NA) residing in coastal communities of the Pacific NW United States are particularly vulnerable to DA exposure, this study focuses on the long-term, 8-year memory outcome associated with their repeated dietary consumption of the neurotoxin. Measures of razor clam consumption, memory, clerical speed and accuracy, and depression were administered over eight years to 500 randomly selected adult NA men and women ages 18–64. Data were analyzed using GEE analyses taking into consideration the year of study, demographic factors, and instrumentation in examining the association between dietary exposure and outcomes. Findings indicated a significant but small decline in total recall memory within the context of otherwise stable clerical speed and accuracy and depression scores. There is reason to believe that a continuum of memory difficulties may be associated with DA exposure, rather than a unitary ASP syndrome.



2021 ◽  
Vol 80 (17) ◽  
Author(s):  
G. Romero-Mujalli ◽  
A. Roisenberg ◽  
A. Cordova-Gonzalez ◽  
P. H. P. Stefano

AbstractRadon (Rn), a radioactive element, has especial interest in medical geology because long-term exposure to high concentration is related to lung cancer. In this study, outdoor and indoor radon measurements were conducted in dwellings of the Piquiri Syenite Massif, located in southern Brazil, given the relative high Rn content in soils of this region. Measurements were done using CR-39 detectors and placing them inside and outside dwellings. Moreover, a one-dimensional diffusion model was performed in order to quantify the natural transport of Rn to the air in confined and aerated environments. Results indicate that the region presents relatively low air Rn concentrations, within the environmental limits; however, the health risk might increase in confined and ill-ventilated environments because of transfer from soil and exhalation from ornamental rock-material often found inside dwellings. The main north facies of the syenite, where most of the rock extractions are located, was found to have the highest air Rn concentration because of the higher soil Rn concentration, compared to other facies of the syenite.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Ishida ◽  
Ryosuke S. Isono ◽  
Jun Kita ◽  
Yutaka W. Watanabe

AbstractThis study examines long-term ocean pH data to evaluate ocean acidification (OA) trends at two coastal research institutions located on the Sea of Japan and the Pacific Ocean. These laboratories are located away from the influences of large rivers and major industrial activity. Measurements were performed daily for the past 30 years (1980s–2010s). The average annual ocean pH for both sites showed generally negative trends. These trends were – 0.0032 and – 0.0068 year–1 (p < 0.001) at the Sea of Japan and Pacific Ocean sites, respectively. The trends were superimposed onto approximately 10-year oscillations, which appear to synchronize with the ocean current periodicity. At the Sea of Japan site, the ocean pH in the summer was higher, and the rate of OA was higher than during other seasons. Our results suggest that seasonality and ocean currents influence OA in the coastal areas of open oceans and can affect the coastal regions of marginal seas.



2021 ◽  
Vol 1756 ◽  
pp. 147334
Author(s):  
Charles Budaszewski Pinto ◽  
Natividade de Sá Couto-Pereira ◽  
Felipe Kawa Odorcyk ◽  
Kamila Cagliari Zenki ◽  
Carla Dalmaz ◽  
...  


1997 ◽  
Vol 07 (11) ◽  
pp. 2487-2499 ◽  
Author(s):  
Rabbijah Guder ◽  
Edwin Kreuzer

In order to predict the long term behavior of nonlinear dynamical systems the generalized cell mapping is an efficient and powerful method for numerical analysis. For this reason it is of interest to know under what circumstances dynamical quantities of the generalized cell mapping (like persistent groups, stationary densities, …) reflect the dynamics of the system (attractors, invariant measures, …). In this article we develop such connections between the generalized cell mapping theory and the theory of nonlinear dynamical systems. We prove that the generalized cell mapping is a discretization of the Frobenius–Perron operator. By applying the results obtained for the Frobenius–Perron operator to the generalized cell mapping we outline for some classes of transformations that the stationary densities of the generalized cell mapping converges to an invariant measure of the system. Furthermore, we discuss what kind of measures and attractors can be approximated by this method.



2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.



Sign in / Sign up

Export Citation Format

Share Document