scholarly journals Optimal architecture for artificial neural networks as pressure estimator

RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Rui Gabriel Modesto de Souza ◽  
Bruno Melo Brentan ◽  
Gustavo Meirelles Lima

ABSTRACT The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most relevant parameters to be adjusted when the ANN is used for pressure estimation.

Author(s):  
Hamideh Fallahi ◽  
Mohammadreza Jalili Ghazizadeh ◽  
Babak Aminnejad ◽  
Jafar Yazdi

Abstract Water leakage control in water distribution networks (WDNs) is one of the main challenges of water utilities. The present study proposes a new method to locate a leakage in WDNs using feedforward artificial neural networks (ANNs). For this purpose, two ANNs training cases are considered. For case1, the ANNs are trained by average daily water demand, including small to large hypothetical leakages. In case 2, the ANNs are trained by hourly water demand and variable hourly nodal leakages over 24 hours. The training parameters are determined by EPANET2.0 hydraulic simulation software using MATLAB programming language. In both cases, first, ANNs are trained using flow rates of total pipes number. Then, sensitivity analysis is performed by hybrid ANNs for the flow rates of pipes number less than the number of the total pipes. The results of proposed hybrid ANNs indicate that if at least the flow rates of 10% of the total pipes are known (using flowmeters), then the leakage locations in both cases can be determined. Despite the complexity of case 2, because of the variations of demand and leakage over the 24-hour, the proposed method could detect the leakage location with high accuracy.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


2019 ◽  
Author(s):  
Chem Int

Recently, process control in wastewater treatment plants (WWTPs) is, mostly accomplished through examining the quality of the water effluent and adjusting the processes through the operator’s experience. This practice is inefficient, costly and slow in control response. A better control of WTPs can be achieved by developing a robust mathematical tool for performance prediction. Due to their high accuracy and quite promising application in the field of engineering, Artificial Neural Networks (ANNs) are attracting attention in the domain of WWTP predictive performance modeling. This work focuses on applying ANN with a feed-forward, back propagation learning paradigm to predict the effluent water quality of the Habesha brewery WTP. Data of influent and effluent water quality covering approximately an 11-month period (May 2016 to March 2017) were used to develop, calibrate and validate the models. The study proves that ANN can predict the effluent water quality parameters with a correlation coefficient (R) between the observed and predicted output values reaching up to 0.969. Model architecture of 3-21-3 for pH and TN, and 1-76-1 for COD were selected as optimum topologies for predicting the Habesha Brewery WTP performance. The linear correlation between predicted and target outputs for the optimal model architectures described above were 0.9201 and 0.9692, respectively.


Author(s):  
Nwoke G. O.

Abstract: Transmission line fault detection is an important aspect of monitoring the health of a power plant since it indicates when suspected faults could lead to catastrophic equipment failure. This research looks at how to detect generator and transmission line failures early and investigates fault detection methods using Artificial Neural Network approaches. Monitoring generator voltages and currents, as well as transmission line performance metrics, is a key monitoring criterion in big power systems. Failures result in system downtime, equipment damage, and a high danger to the power system's integrity, as well as a negative impact on the network's operability and dependability. As a result, from a simulation standpoint, this study looks at fault detection on the Trans Amadi Industrial Layout lines. In the proposed approach, one end's three phase currents and voltages are used as inputs. For the examination of each of the three stages involved in the process, a feed forward neural network with a back propagation algorithm has been used for defect detection and classification. To validate the neural network selection, a detailed analysis with varied numbers of hidden layers was carried out. Between transmission lines and power customers, electrical breakdowns have always been a source of contention. This dissertation discusses the use of Artificial Neural Networks to detect defects in transmission lines. The ANN is used to model and anticipate the occurrence of transmission line faults, as well as classify them based on their transient characteristics. The results revealed that, with proper issue setup and training, the ANN can properly discover and classify defects. The method's adaptability is tested by simulating various defects with various parameters. The proposed method can be applied to the power system's transmission and distribution networks. The MATLAB environment is used for numerous simulations and signal analysis. The study's main contribution is the use of artificial neural networks to detect transmission line faults. Keywords: Faults and Revenue Losses


2019 ◽  
Vol 71 ◽  
pp. 01003
Author(s):  
J. Vrbka ◽  
J. Horák ◽  
V. Machová

The objective of this contribution is to prepare a methodology of using artificial neural networks for equalizing time series when considering seasonal fluctuations on the example of the Czech Republic import from the People´s Republic of China. If we focus on the relation of neural networks and time series, it is possible to state that both the purpose of time series themselves and the nature of all the data are what matters. The purpose of neural networks is to record the process of time series and to forecast individual data points in the best possible way. From the discussion part it follows that adding other variables significantly improves the quality of the equalized time series. Not only the performance of the networks is very high, but the individual MLP networks are also able to capture the seasonal fluctuations in the development of the monitored variable, which is the CR import from the PRC.


Sign in / Sign up

Export Citation Format

Share Document