scholarly journals Morphology and stability of aggregates of an Oxisol according to tillage system and gypsum application

Revista CERES ◽  
2012 ◽  
Vol 59 (6) ◽  
pp. 859-866 ◽  
Author(s):  
Fábio Régis de Souza ◽  
Edgard Jardim Rosa Junior ◽  
Carlos Ricardo Fietz ◽  
Douglas Martins Pereira Pellin ◽  
Anderson Cristian Bergamin ◽  
...  

Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots) with 0 and 2000 kg ha-1 of gypsum (subplots) and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m) as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.

2002 ◽  
Vol 32 (3) ◽  
pp. 401-406 ◽  
Author(s):  
Cimélio Bayer ◽  
Deborah Pinheiro Dick ◽  
Genicelli Mafra Ribeiro ◽  
Klaus Konrad Scheuermann

Land use and soil management may affect both labile and humified soil organic matter (SOM) fractions, but the magnitude of these changes is poorly known in subtropical environments. This study investigated effects of four land use and soil management systems (forest, native pasture, and conventional tillage and no-tillage in a wheat/soybean succession) on (i) total soil organic carbon (SOC) stocks (0 to 250mm depth) and on (ii) carbon (C) stocks in labile (coarse, light) and humified (mineral-associated, humic substances) SOM fractions (0 to 25mm depth), in a Hapludox soil from southern Brazil. In comparison to the adjacent forest site, conventionally tilled soil presented 36% (46.2Mg ha-1) less SOC in the 0 to 250mm depth and a widespread decrease in C stocks in all SOM fractions in the 0 to 25mm depth. The coarse (>53 mum) and light (<1kg dm-3) SOM fractions were the most affected under no-tillage, showing 393% (1.22Mg C ha-1) and 289% (0.55Mg C ha-1) increases, respectively, in relation to conventional tillage. Similar results were observed for mineral-associated SOM and humic substance C pools (34% and 38% increases, respectively) under no-tillage. Compared with labile SOM fraction results, the percentual increments on C stocks in humified fractions were smaller; but in absolute terms this C pool yielded the highest increases (3.06 and 2.95Mg C ha-1, respectively). These results showed that both labile and humified organic matter are better protected under the no-tillage system, and consequently less vulnerable to mineralization. Humified SOM stabilization process involving interactions with variable charge minerals is probably important in maintaining and restoring soil and environmental quality in tropical and subtropical regions.


Author(s):  
Marla O. Fagundes ◽  
Diony A. Reis ◽  
Roberto B. Portella ◽  
Fabiano J. Perina ◽  
Julio C. Bogiani

ABSTRACT Assessing soil quality under different cover crops or different management systems is essential to its conservation. This study aimed to evaluate an Oxisol cultivated with corn and cotton, after different crop successions and under no-tillage system (NTS) and conventional tillage system (CT), through the soil quality index (SQI), using an area of native Cerrado as reference. The study was carried out in the municipality of Luís Eduardo Magalhães, Western Bahia, Brazil. Soil samples with the preserved and non-preserved structure were collected in the layers of 0-0.05 m, 0.05-0.10 m, and 0.10-0.20 m to determine the macroporosity, the soil bulk density, the available water, the levels of total organic carbon, the clay dispersed in water, and the degree of flocculation. The averages of the attributes measured in the treatments and the soil quality index, which was elaborated by the method of deviations of the values of the attributes measured in the treatments concerning the reference area, followed by normalization, were compared by the Duncan test (p ≤ 0.05). The soil under CT, in all treatments, had its quality reduced when compared to the NTS. Also, the SQI used was sensitive to detect the changes caused by the management systems and assign consistent scores to the evaluated soil quality.


2020 ◽  
Vol 12 (4) ◽  
pp. 194
Author(s):  
Venâncio Rodrigues e Silva ◽  
José Luiz Rodrigues Torres ◽  
Danyllo Denner de Almeida Costa ◽  
Bruna de Souza Silveira ◽  
Dinamar Márcia da Silva Vieira ◽  
...  

The period of implantation of the no-tillage system (NTS) is a fundamental factor to the dimension of the changes that occur to the soil&#39;s physical, chemical and biological attributes. Thus, the objective of this study was to evaluate the soil changes to the physical attributes and correlate the results to the soil organic matter in areas of different long-term soil management. The study was set as a completely randomised design, in a 4 &times; 4 factorial scheme, with four management systems [5 years NTS (NTS5); 17 years NTS (NTS17); conventional tillage system for 20 years (CTS20); native area (NA)], and four soil depths (0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.4 m), with five repetitions. Soil mechanical resistance to root penetration (RP), bulk density (SD), volumetric moisture (VM), macro (Ma), microporosity (Mi) and total porosity (TP), and the aggregation parameters were evaluated. The CTS20, NTS5 and NTS17 presented superior SD in the most superficial soil layers, which was not yet causing resistance to root development. The SD was the only physical attribute that correlated significantly with all the other soil attributes evaluated, indicating the importance of such attribute to evaluate soil quality to crops. The soil physical attributes found in the Cerrado native area followed the sequence of similarities: no-tillage system with 17 years (most similar), with five years and the conventional tillage system (less similar). The changes caused by the anthropic activity in the soil&#39;s physical attributes are more pronounced and perceptible in soil depths up to 0.2 m.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2003 ◽  
Vol 60 (3) ◽  
pp. 581-586 ◽  
Author(s):  
Ildegardis Bertol ◽  
Eloy Lemos Mello ◽  
Jean Cláudio Guadagnin ◽  
Almir Luis Vedana Zaparolli ◽  
Marcos Roberto Carrafa

Water erosion causes soil degradation, which is closely related to nutrient losses either in, the soluble form or adsorbed to soil particles, depending mainly on the adopted soil management system. This study was carried out in São José do Cerrito, SC, Brazil, between March 2000 and June 2001. The objective was to quantify available nitrogen, phosphorus, potassium, calcium and magnesium losses in water erosion obtained with simulated rainfall in the following soil management systems: conventional tillage with no-crop (bare soil) (BS), conventional tillage with soybean (CT), reduced tillage with soybean (RT), no tillage with soybean on a desiccated and burned natural pasture (DBNP), and no tillage with soybean on a desiccated natural pasture (DNP). A rotating boom rainfall simulator was used to perform three rainfall tests with constant intensity of 64 mm h-1 and sufficient duration to reach constant runoff rate, on a clayey-loam, well-structured Typic Hapludox, with an average slope of 0.18 m m-1. The first test was carried out five days before soybean emergence and the second and third at 30 and 60 days, respectively. The nutrient concentration in water and total losses of nitrogen, phosphorus, potassium, calcium and magnesium were higher under CT than in the other soil management systems.


2010 ◽  
Vol 45 (12) ◽  
pp. 1331-1341 ◽  
Author(s):  
Homero Bergamaschi ◽  
Genei Antonio Dalmago ◽  
João Ito Bergonci ◽  
Cleusa Adriane Menegassi Bianchi Krüger ◽  
Bruna Maria Machado Heckler ◽  
...  

The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy


2020 ◽  
Vol 150 ◽  
pp. 03010
Author(s):  
Hassnae Maher ◽  
Rachid Moussadek ◽  
Abdelmjid Zouahri ◽  
Ahmed Douaik ◽  
Houria Dakak ◽  
...  

In Morocco, agriculture is an important sector of the economy, accounting for 15 to 20% of Gross Domestic Product. However, it has faced several challenges: intensive tillage of land that has accelerated water erosion, seriously threatening water and soil potential, low plant cover density and misuse of traditional agricultural practices, causing a decrease in organic matter levels and destroying aggregate stability. Climate change is making water and soil management in agriculture more and more complicated. The major challenge for Moroccan agriculture is to increase agricultural production while preserving natural resources. The objective of our study is to evaluate the effect of no tillage (NT) on the physico- chemical properties of soil in the El Koudia experimental station, Rabat, Morocco. The crop is durum wheat, Arrehane variety. Soil samples are pre-dried, ground and screened to 0.2mm for organic matter (OM) analysis and 2mm for the remainder of the analyses. Plugs, canned, are then sintered, screened and dried for structural stability tests. The results show that no tillage (NT) favours the accumulation of surface OM, particularly at the 0-5cm horizon unlike conventional tillage (CT). The NT promotes structural stability, with a mean weight diameter (MWD) = 0.94mm for the NT compared to 0.83mm for the CT. These results show that soils ploughed in CT are more exposed to erosion degradation than soils not ploughed (NT). In addition, NT preserves soil moisture and promotes additional water retention of 5 to 10%.


2015 ◽  
Vol 29 (4) ◽  
pp. 467-473 ◽  
Author(s):  
Veronica Muñoz-Romero ◽  
Luis Lopez-Bellido ◽  
Rafael J. Lopez-Bellido

Abstract Soil temperature is a factor that influences the rates of physical, chemical, and biological reactions in soils and has a strong influence on plant growth. A field study was conducted during 2006-2007 and 2009-2010 on a typical rainfed Mediterranean Vertisol to determine the effects of the tillage system and the crop on soil temperature. The experimental treatments were the tillage system (no-tillage and conventional tillage) and the crop (wheat and faba bean). Soil temperature was measured at a 20 cm depth at 1 h intervals from December 1st to November 30th of 2006-2007 and 2009-2010. There was a highly significant relationship between air temperature (both maximum and minimum) and soil temperature for the two tillage systems. Soil temperature was similar in the growing season for both crops but was higher in the conventional tillage than in the no-tillage system, with differences between 0.7 and 2.6°C depending on the month of the year. A higher soil temperature with conventional tillage can be beneficial in the cold sowing period (November-December), improving crop establishment. In contrast, in critical periods with water deficits (spring) during which grain formation occurs, the lower temperature corresponding to the no-tillage system would be more favourable.


2018 ◽  
Vol 10 (5) ◽  
pp. 276
Author(s):  
Magali De Ávila Fortes ◽  
Rogério Oliveira de Sousa ◽  
Algenor da Silva Gomes ◽  
Fabiana Schmidt ◽  
Walkyria Bueno Scivittaro ◽  
...  

The objective of this work was to evaluate the response of irrigated rice to phosphate fertilization using triple superphosphate (TSP) and Arad phosphate rock (APR), and the phosphate residual effects of upland crops in no-tillage system on the following rice crop. Also, it aimed to evaluate the efficiency of Mehlich-1 and anion exchange resin as soil P extractors. Two experiments were conducted in Albaqualf soil under irrigated conditions in the southern region of Rio Grande do Sul State. The experiments were designed as random blocks with four replications and the treatments were displayed as a 2 × 2 factorial (TSP and APR, with and without annual P application as TSP). No yield responses to phosphate were observed. Phosphate fertilization performed on upland crops (maize and soybeans) presented a residual effect on the rice crop even after four years of consecutive cropping under no-tillage. The extractors Mehlich-1 and AER were equally efficient in the evaluation of P availability for the rice crop. P content values obtained by both methods did show a significant correlation with accumulated plant P. The APR presents a similar performance as the TSP in regard to phosphate nutrition in irrigated rice when rotated with upland crops under no-tillage system.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


Sign in / Sign up

Export Citation Format

Share Document