scholarly journals Effect of brushwood transposition on the leaf litter arthropod fauna in a cerrado area

2013 ◽  
Vol 37 (5) ◽  
pp. 1158-1163 ◽  
Author(s):  
Paula Cristina Benetton Vergílio ◽  
Fátima do Rosário Naschenveng Knoll ◽  
Daniela da Silva Mariano ◽  
Nágila Maiara Dinardi ◽  
Marcos Yukio Ueda ◽  
...  

The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.

2021 ◽  
pp. 559-574
Author(s):  
Sujitra Yodda ◽  
Suwit Laohasiriwong ◽  
A. Terry Rambo

Maintaining soil quality is a major problem for traditional farmers in the tropics. Many rely on organic amendments to enhance the productivity of their fields. However, indigenous knowledge about soil organic matter (SOM) and its management has received relatively little attention from researchers. This paper describes the use of organic materials to maintain soil quality by Thai-Lao farmers in a rice-growing village in Northeast Thailand. In-depth semi-structured interviews were conducted with twelve farmers to: 1) identify the indicators of soil fertility they employed; 2) inventory the organic materials they used; 3) determine changes in the use of amendments over time; and 4) understand their concept of SOM. They used many physical and biological indicators of soil quality. They used nine different organic materials:  rice straw and stubble, cattle, buffalo and pig manure, rice husks, sunn hemp plants as green manure, charcoal, commercial compost, homemade compost, and tree leaf litter. Recently, use of livestock manure, rice husks, charcoal, and leaf litter has declined because of supply shortages. They do not appear to have a general concept of organic matter nor is there a commonly used word for “organic” in their language. Most of the farmers would use larger quantities of organic amendments but are constrained by their scarcity and high cost. Ways to increase local supplies of organic materials must be found if the government’s efforts to encourage the adoption of organic agriculture are to be successful.


CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Elaine Novak ◽  
Laércio Alves Carvalho ◽  
Etenaldo Felipe Santiago ◽  
Irzo Isaac Rosa Portilho

ABSTRACT A challenge for the environmental recovery of degraded areas is the search for soil data. In this process, the microbiological parameters and soil chemicals are potential indicators of soil quality. This study aimed to evaluate soil quality based on microbiological and chemical soil attributes in different areas involving environmental recovery, sugarcane cultivation and remnants of native vegetation located in a rural private property farm in State of Mato Grosso do Sul, Brazil, in Hapludox Eutrophic soil. The microbiological (microbial biomass carbon, basal respiration, microbial quotient and metabolic quotient) and chemical parameters (organic matter, carbon, pH, cationic exchange capacity, sum of bases, potassium, phosphorus, magnesium, calcium, saturation base and potential acidity) were assessed. Data were assessed by variance and multivariate analysis (Principal Component Analysis and cluster analysis). Overall, the results showed highest alteration in the chemical and microbiological characteristics of the soil in sugarcane cultivation area in comparison with other areas. Considering the studied recovery areas, REC1, REC5 and REC7 show chemical and microbiological conditions with most similarity to native vegetation. Despite the short period of the resilience enhancement of environmental recovery areas, the development of vegetation cover and establishment of the microbial community were determined to be important factors for improving soil quality and environmental recovery in several of the areas studied.


2018 ◽  
Vol 95 ◽  
pp. 568-578 ◽  
Author(s):  
Inken Krüger ◽  
Caroline Chartin ◽  
Bas van Wesemael ◽  
Monique Carnol

SOIL ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Antonello Bonfante ◽  
Fabio Terribile ◽  
Johan Bouma

Abstract. This study focuses on soil physical aspects of soil quality and health with the objective to define procedures with worldwide rather than only regional applicability, reflecting modern developments in soil physical and agronomic research and addressing important questions regarding possible effects of soil degradation and climate change. In contrast to water and air, soils cannot, even after much research, be characterized by a universally accepted quality definition and this hampers the internal and external communication process. Soil quality expresses the capacity of the soil to function. Biomass production is a primary function, next to filtering and organic matter accumulation, and can be modeled with soil–water–atmosphere–plant (SWAP) simulation models, as used in the agronomic yield-gap program that defines potential yields (Yp) for any location on earth determined by radiation, temperature and standardized crop characteristics, assuming adequate water and nutrient supply and lack of pests and diseases. The water-limited yield (Yw) reflects, in addition, the often limited water availability at a particular location. Actual yields (Ya) can be considered in relation to Yw to indicate yield gaps, to be expressed in terms of the indicator (Ya/Yw)×100. Soil data to calculate Yw for a given soil type (the genoform) should consist of a range of soil properties as a function of past management (various phenoforms) rather than as a single representative dataset. This way a Yw-based characteristic soil quality range for every soil type is defined, based on semipermanent soil properties. In this study effects of subsoil compaction, overland flow following surface compaction and erosion were simulated for six soil series in the Destra Sele area in Italy, including effects of climate change. Recent proposals consider soil health, which appeals more to people than soil quality and is now defined by separate soil physical, chemical and biological indicators. Focusing on the soil function biomass production, physical soil health at a given time of a given type of soil can be expressed as a point (defined by a measured Ya) on the defined soil quality range for that particular type of soil, thereby defining the seriousness of the problem and the scope for improvement. The six soils showed different behavior following the three types of land degradation and projected climate change up to the year 2100. Effects are expected to be major as reductions of biomass production of up to 50 % appear likely under the scenarios. Rather than consider soil physical, chemical and biological indicators separately, as proposed now elsewhere for soil health, a sequential procedure is discussed, logically linking the separate procedures.


2016 ◽  
Vol 51 (9) ◽  
pp. 1643-1651 ◽  
Author(s):  
Diane Cristina Stefanoski ◽  
Cícero Célio de Figueiredo ◽  
Glenio Guimarães Santos ◽  
Robélio Leandro Marchão

Abstract The objective of this work was to assess soil quality indicators obtained with different datasets to compare soil management systems in the Brazilian Cerrado. Three criteria were used to select soil physical, chemical, and biological indicators: the full set of indicators obtained, with 36 parameters, for which all the physical, chemical, and biological soil properties were determined; a subset of indicators selected by principal component analysis (20 parameters); and a subset of indicators with some frequency of use in the literature (16 parameters). These indicators were obtained from the following management systems: no-tillage, conventional tillage, and native cerrado vegetation. Soil samples were collected at 0.0-0.1-m soil depth, and soil quality indicators were subjected to analysis of variance and their means were compared. The incorporation of soil native cerrado into agriculture decreased soil quality. The most commonly used indicators in the scientific literature are sensitive enough to detect differences in soil quality according to land use. Therefore, the selection of a minimum set of representative data can be more useful than a complex set of properties to compare management systems as to their soil quality.


2009 ◽  
Vol 24 (4) ◽  
pp. 308-318 ◽  
Author(s):  
E.A. Stockdale ◽  
C.A. Watson

AbstractThe health of the soil, recognized by its active role in the linked processes of decomposition and nutrient supply, is considered as the foundation of agriculture by the organic farming movement. Nutrient management in organically managed soils is fundamentally different from that of conventional agricultural systems. Crop rotations are designed with regard to maintenance of fertility with a focus on nutrient recycling. Where nutrients are added to the system, inputs are in organic and/or non-synthetic fertilizer sources that are mostly slow release in nature. Hence a greater reliance is placed on soil chemical and biological processes to release nutrients in plant-available forms. In this respect, nutrient availability in organically farmed soils is more dependent upon soil processes than is the case in conventional agriculture. The development and use of biological indicators of soil quality may therefore be more important in organic (and other low input) farming systems. The aim of this paper is to evaluate current evidence for the impact of organic farming systems on soil biological quality and consider the identification of appropriate biological indicators for use by organic farmers and their advisors. Organic farming systems are generally associated with increased biological activity and increased below-ground biodiversity. The main impacts on biological fertility do not result from the systemsper sebut are related to the amount and quality of the soil organic matter pool and disruptions of soil habitat via tillage. Even within the constraints of organic farming practices it is possible for farmers to make changes to management practices which will tend to improve soil biological quality. It is, however, by no means clear that distinct indicators of soil biological quality are needed for organic farming systems. It is important not only to identify the most appropriate indicators but also to ensure that farmers and land managers can understand and relate to them to support on-farm management decisions.


Author(s):  
Iwona Gruss ◽  
Jacek Twardowski ◽  
Diana Nebeská ◽  
Josef Trögl ◽  
Tatyana Stefanovska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document