scholarly journals Use of Organic Materials to Maintain Soil Quality by Thai-Lao Rice Farmers in Northeast Thailand

2021 ◽  
pp. 559-574
Author(s):  
Sujitra Yodda ◽  
Suwit Laohasiriwong ◽  
A. Terry Rambo

Maintaining soil quality is a major problem for traditional farmers in the tropics. Many rely on organic amendments to enhance the productivity of their fields. However, indigenous knowledge about soil organic matter (SOM) and its management has received relatively little attention from researchers. This paper describes the use of organic materials to maintain soil quality by Thai-Lao farmers in a rice-growing village in Northeast Thailand. In-depth semi-structured interviews were conducted with twelve farmers to: 1) identify the indicators of soil fertility they employed; 2) inventory the organic materials they used; 3) determine changes in the use of amendments over time; and 4) understand their concept of SOM. They used many physical and biological indicators of soil quality. They used nine different organic materials:  rice straw and stubble, cattle, buffalo and pig manure, rice husks, sunn hemp plants as green manure, charcoal, commercial compost, homemade compost, and tree leaf litter. Recently, use of livestock manure, rice husks, charcoal, and leaf litter has declined because of supply shortages. They do not appear to have a general concept of organic matter nor is there a commonly used word for “organic” in their language. Most of the farmers would use larger quantities of organic amendments but are constrained by their scarcity and high cost. Ways to increase local supplies of organic materials must be found if the government’s efforts to encourage the adoption of organic agriculture are to be successful.

Soil Research ◽  
2014 ◽  
Vol 52 (4) ◽  
pp. 409 ◽  
Author(s):  
Romina Romaniuk ◽  
Lidia Giuffré ◽  
Alejandro Costantini ◽  
Norberto Bartoloni ◽  
Paolo Nannipieri

Soil is a non-renewable natural resource, considered as the basis for food production. Changes in soil properties may indicate potentially beneficial or degradative effects of a given management practice, so it is important to select the most sensitive soil properties to act as quality indicators. This research evaluated different approaches to selecting soil quality indicators in the construction of soil quality indices (SQIs). The sensitivity of integrative SQIs, constructed by considering diverse chemical, physical, and biological properties, was compared with biological SQIs, using only biochemical and microbiological indicators, to assess soil quality in an intensive horticultural production system under short- and long-term organic and conventional management. The results provided by the SQIs showed that plots under organic management had increase soil quality compared with the conventionally managed plots, independent of the number of years under production. The SQIs integrated by physical, chemical and biological indicators were more sensitive than indices composed only of biological indicators, as they did not reflect the physical properties of the studied plots. The organic amendments had a great influence on the microbial community; therefore, microbiological indices could not provide reliable information on soil quality in production systems with high inputs of organic materials.


2021 ◽  
Vol 9 (2) ◽  
pp. 96
Author(s):  
Jacir João Chies ◽  
Helvio Debli Casalinho ◽  
Lizete Stumpf ◽  
Marília Alves Brito Pinto ◽  
Leonir Aldrigui Dutra Junior

Farmers' local knowledge about soil quality and management practices should be considered to assess the impact of agricultural technology packages on the environmental performance of agro-ecosystems. This study aimed to evaluate the soil quality under agroecological production in southern Brazil, which was considered of good quality by the farmers' perception. From August to November 2017, ten farms from Liberdade settlement were visited, and semi-structured interviews were conducted to collect information about soil and agricultural knowledge. “What does good quality soil mean? What cares for preserve soil quality? Does the soil location in landscape influence conservation practices?” were the questions asked. In May 2018, soil samples were collected from each area, and chemical, physical, and biological attributes were determined. All farmers mentioned the organic matter indicated good soil quality; however, the study showed that most soils have low content, a consequence of the annual tillage adopted by all farmers for the implantation of seeds crops; Farmers indicated that a good quality soil has "life" with the presence of organisms. In our study, a low population of mites and springtails in most areas was observed. Positive farmers’ perception about the organic matter content and soil organism’s presence in their agroecological production areas come from the degradation history of the areas, at the same time that they attribute improvements in soil quality due to the actions adopted over the 10 years of agroecological production.


2021 ◽  
Author(s):  
Paul Simfukwe ◽  
Paul W Hill ◽  
Davey L Jones ◽  
Bridget Emmett ◽  

Generally, the physical, chemical and biological attributes of a soil combined with abiotic factors (e.g. climate and topography) drive pedogenesis. However, biological indicators of soil quality play no direct role in traditional soil classification and surveys. To support their inclusion in classification schemes, previous studies have shown that soil type is a key factor determining microbial community composition in arable soils. This suggests that soil type could be used as proxy for soil biological function and vice versa. In this study we assessed the relationship between soil biological indicators with either vegetation cover or soil type. A wide range of soil attributes were measured on soils from across the UK to investigate whether; (1) appropriate soil quality factors (SQFs) and indicators (SQIs) can be identified, (2) soil classification can predict SQIs; (3) which soil quality indicators were more effectively predicted by soil types, and (4) to what extent do soil types and/ or aggregate vegetation classes (AVCs) act as major regulators of SQIs. Factor analysis was used to group 20 soil attributes into six SQFs namely; Soil organic matter , Organic matter humification , Soluble nitrogen , Microbial biomass , Reduced nitrogen and Soil humification index . Of these, Soil organic matter was identified as the most important SQF in the discrimination of both soil types and AVCs. Among the measured soil attributes constituting the Soil organic matter factor were, microbial quotient and bulk density were the most important attributes for the discrimination of both individual soil types and AVCs. The Soil organic matter factor discriminated three soil type groupings and four aggregate vegetation class groupings. Only the Peat soil and Heath and bog AVC were distinctly discriminated from other groups. All other groups overlapped with one another, making it practically impossible to define reference values for each soil type or AVC. We conclude that conventionally classified soil types cannot predict the SQIs (or SQFs), but can be used in conjunction with the conventional soil classifications to characterise the soil types. The two-way ANOVA showed that the AVCs were a better regulator of the SQIs than the soil types and that they (AVCs) presented a significant effect on the soil type differences in the measured soil attributes.


2013 ◽  
Vol 37 (5) ◽  
pp. 1158-1163 ◽  
Author(s):  
Paula Cristina Benetton Vergílio ◽  
Fátima do Rosário Naschenveng Knoll ◽  
Daniela da Silva Mariano ◽  
Nágila Maiara Dinardi ◽  
Marcos Yukio Ueda ◽  
...  

The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.


Author(s):  
Yaa Opoku-Kwanowaa ◽  
Jinggui Wu ◽  
Xiaodong Chen ◽  
Ahmed Sharaf ◽  
Sonny Gad Attipoe

Aims: This research aimed to assess how the physicochemical properties of black soil respond to different organic amendments after 10 years of application. Study Design: The experiment was established in 2010 and followed a randomized block design consisting of 24 plots (5 m × 5 m) 25 m2 with eight treatments in three replicates. Place and Duration of Study: The study site was located at the Jilin Agricultural University Research Farm, Northeast China (43°48′ N, 125°23′ E; km). Methodology: The treatments for the study included an annual input of chemical fertilizer and organic amendments at the surface of the soil. The treatments were: Control (CK), chicken manure (JM), fodder grass (FG), mushroom (MS), maize straw (MZ), tree leaf (TL), pig manure (PM) and cow manure (CM). Chemical fertilizers were added at the rate of 165 kg of N, 82.5 kg of P and 82.5 kg of K ha_1 per year. Application rates of organic materials were adjusted to similar amounts of organic matter (2000 kgha−1). In June 2019, soil samples were collected from each of the amended fields. In each field, three sampling points were randomly selected. Soil samples were collected from the 0 – 20 cm depth using a core sampler then taken to the laboratory for soil physicochemical properties analysis. Results: Comparing the results of the organic treatments with CK, bulk density decreased by 5.6-18.0% while porosity, EC, pH, total N and SOC significantly increased in the organic treatments by 6.0-25.9%, 8.3-25.0%, 0.52-1.7%, 2.7-54.7% and 1.3-18.4% respectively. The textural class of soil under the different treatments did not change however, the distribution of soil particle size varied among the treatments, where high clay and silt content were recorded in the amended fields. Moreover, the application of different organic materials significantly affected the soil aggregate stability and this was attributed to the increase in organic matter content which accelerated important microbial activities in the soil to improve aggregation. At higher suction potentials, higher water contents were recorded in the organic amended fields mainly due to the improved physical properties of the soil. Conclusion: The study results showed that the application of organic amendments greatly improves the physical and chemical properties of black soil. Therefore, using these organic amendments can serve as an effective strategy to enhance soil quality and fertility.


2013 ◽  
Vol 117 (1) ◽  
pp. 81-99 ◽  
Author(s):  
Kristen S. Veum ◽  
Keith W. Goyne ◽  
Robert J. Kremer ◽  
Randall J. Miles ◽  
Kenneth A. Sudduth

1999 ◽  
Vol 79 (1) ◽  
pp. 37-45 ◽  
Author(s):  
M. A. Bolinder ◽  
D. A. Angers ◽  
E. G. Gregorich ◽  
M. R. Carter

The response of soil quality attributes to management practices across a diverse range of farming systems is key to identifying a robust minimum data set (MDS). The objectives of this study were to compare the response and consistency of different soil organic matter (SOM) attributes to changes in soil management practices in eastern Canadian agroecosystems. Soil samples (0–10 cm) were obtained at sites of several replicated experiments throughout eastern Canada, and 16 paired comparisons were selected to determine the effect of conservation (no-tillage, rotations, organic amendments) versus conventional (fall moldboard plowing, continuous cropping, no organic amendments) management practices. A sensitivity index was calculated for each of the attributes by dividing the values for conservation treatments with their conventionally managed counterparts (i.e., Conservation/Conventional). The index showed that light fraction (LF) N (1.58) and macro-organic matter-N (MOM-N) (1.54) were the most sensitive SOM attributes to conservation management practices. Light fraction-C (LF-C), macro-organic matter-C (MOM-C) and microbial biomass-C (MB-C) also showed high sensitivity to conservation management (1.48, 1.34 and 1.44, respectively). The sensitivity index for carbohydrates, whole soil C and total N were 1.23, 1.16 and 1.17, respectively. However, the Friedman two-way analysis of variance test indicated that the sensitivity of the different attributes to conservation management was site specific. For example, although LF-N was highly ranked, it did not respond as frequently as most of the other attributes. A non-parametric sign test showed that whole soil C and N provided the most consistent response to conservation management. The average sensitivity index was highest for the amendment (1.82) followed by the tillage (1.26) and rotational (1.14) conservation management practices, suggesting that organic amendments had the greatest impact on most of the attributes. These results suggest that for eastern Canadian soils, use of MOM-C and MOM-N, MB-C and whole soil C would provide a useful, easy to measure and robust MDS. Key words: Soil quality indicators, response, conservation management


Author(s):  
S.M. Thomas ◽  
M.H.Beare C.D. Ford ◽  
V. Rietveld

Humping/hollowing and flipping are land development practices widely used on the West Coast to overcome waterlogging constraints to pasture production. However, there is very limited information about how the resulting "new" soils function and how their properties change over time following these extreme modifications. We hypothesised that soil quality will improve in response to organic matter inputs from plants and excreta, which will in turn increase nutrient availability. We tested this hypothesis by quantifying the soil organic matter and nutrient content of soils at different stages of development after modification. We observed improvements in soil quality with increasing time following soil modification under both land development practices. Total soil C and N values were very low following flipping, but over 8 years these values had increased nearly five-fold. Other indicators of organic matter quality such as hot water extractable C (HWC) and anaerobically mineralisable N (AMN) showed similar increases. With large capital applications of superphosphate fertiliser to flipped soils in the first year and regular applications of maintenance fertiliser, Olsen P levels also increased from values


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


Sign in / Sign up

Export Citation Format

Share Document