scholarly journals Soil seed bank of plant species as a function of long-term soil management and sampled depth

2011 ◽  
Vol 29 (4) ◽  
pp. 725-736 ◽  
Author(s):  
G Concenço ◽  
J.C Salton ◽  
R.C Brevilieri ◽  
P.B Mendes ◽  
M.L Secretti

This study aimed at assessing the level of weed infestation indifferent areas that were submitted to different soil management for 16 years. Four management systems were studied: (1) agriculture only under conventional tillage system; (2) agriculture only under no-till system; (3) crop-livestock integrationcrop-livestock integration; (4) livestock only. These areas were sampled at three soil depths (0-5, 5-10 and 10-15 cm), and soil was stored in plastic pots and taken to a greenhouse, where soil moisture and weight were standardized. Soil was kept near 70% moisture field capacity, being revolved every 20 days when all seedling emerged from soil were counted, identified and collected for dry mass assessment. The soil coverage by weeds, number of weed seedlings and dry mass of the weedy community were assessed. A phytoecological analysis was conducted. Weed composition is differentdifferent among management systems after 16 years. Areas with livestock showed much smaller number of weed species in comparison to systems where only grain crops are grown. The presence of livestock affects the potential of germination of soil seed bank. Agriculture systems are similar in terms of weed composition along soil profile, while systems involving livestock show little relation in what regards such sampled depths. Conservationist models of land exploration contribute to reduce severity of weed species occurrence in the long term.

2020 ◽  
Vol 12 (4) ◽  
pp. 194
Author(s):  
Venâncio Rodrigues e Silva ◽  
José Luiz Rodrigues Torres ◽  
Danyllo Denner de Almeida Costa ◽  
Bruna de Souza Silveira ◽  
Dinamar Márcia da Silva Vieira ◽  
...  

The period of implantation of the no-tillage system (NTS) is a fundamental factor to the dimension of the changes that occur to the soil's physical, chemical and biological attributes. Thus, the objective of this study was to evaluate the soil changes to the physical attributes and correlate the results to the soil organic matter in areas of different long-term soil management. The study was set as a completely randomised design, in a 4 × 4 factorial scheme, with four management systems [5 years NTS (NTS5); 17 years NTS (NTS17); conventional tillage system for 20 years (CTS20); native area (NA)], and four soil depths (0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.4 m), with five repetitions. Soil mechanical resistance to root penetration (RP), bulk density (SD), volumetric moisture (VM), macro (Ma), microporosity (Mi) and total porosity (TP), and the aggregation parameters were evaluated. The CTS20, NTS5 and NTS17 presented superior SD in the most superficial soil layers, which was not yet causing resistance to root development. The SD was the only physical attribute that correlated significantly with all the other soil attributes evaluated, indicating the importance of such attribute to evaluate soil quality to crops. The soil physical attributes found in the Cerrado native area followed the sequence of similarities: no-tillage system with 17 years (most similar), with five years and the conventional tillage system (less similar). The changes caused by the anthropic activity in the soil's physical attributes are more pronounced and perceptible in soil depths up to 0.2 m.


2002 ◽  
Vol 32 (3) ◽  
pp. 401-406 ◽  
Author(s):  
Cimélio Bayer ◽  
Deborah Pinheiro Dick ◽  
Genicelli Mafra Ribeiro ◽  
Klaus Konrad Scheuermann

Land use and soil management may affect both labile and humified soil organic matter (SOM) fractions, but the magnitude of these changes is poorly known in subtropical environments. This study investigated effects of four land use and soil management systems (forest, native pasture, and conventional tillage and no-tillage in a wheat/soybean succession) on (i) total soil organic carbon (SOC) stocks (0 to 250mm depth) and on (ii) carbon (C) stocks in labile (coarse, light) and humified (mineral-associated, humic substances) SOM fractions (0 to 25mm depth), in a Hapludox soil from southern Brazil. In comparison to the adjacent forest site, conventionally tilled soil presented 36% (46.2Mg ha-1) less SOC in the 0 to 250mm depth and a widespread decrease in C stocks in all SOM fractions in the 0 to 25mm depth. The coarse (>53 mum) and light (<1kg dm-3) SOM fractions were the most affected under no-tillage, showing 393% (1.22Mg C ha-1) and 289% (0.55Mg C ha-1) increases, respectively, in relation to conventional tillage. Similar results were observed for mineral-associated SOM and humic substance C pools (34% and 38% increases, respectively) under no-tillage. Compared with labile SOM fraction results, the percentual increments on C stocks in humified fractions were smaller; but in absolute terms this C pool yielded the highest increases (3.06 and 2.95Mg C ha-1, respectively). These results showed that both labile and humified organic matter are better protected under the no-tillage system, and consequently less vulnerable to mineralization. Humified SOM stabilization process involving interactions with variable charge minerals is probably important in maintaining and restoring soil and environmental quality in tropical and subtropical regions.


2016 ◽  
Vol 51 (9) ◽  
pp. 1668-1676 ◽  
Author(s):  
Géssica Pereira de Souza ◽  
Cícero Célio de Figueiredo ◽  
Djalma Martinhão Gomes de Sousa

Abstract The objective of this work was to evaluate the effects of soil management systems, cover crops, and phosphate fertilization on soil humic fractions in a long-term experiment. The treatments consisted of conventional tillage and no-tillage with pearl millet (Pennisetum glaucum) or velvet bean (Mucuna aterrima) as cover crops, at two doses of phosphorous: 0 and 100 kg ha-1 P2O5 per year. Soil samples were taken 11 years after the establishment of the experiment and analyzed for soil total organic carbon and carbon content of humic fractions at 0.00-0.05, 0.05-0.10, and 0.10-0.20-m depths. The humic fractions are sensitive to soil management, except free fulvic acid, which was the only one that did not reduce its carbon contents on the surface layer (0.00-0.05 m) with conventional tillage. The main changes occurred on the soil surface layer, in which the no-tillage system with pearl millet as a cover crop provided the highest carbon levels in humic fractions. Long-term phosphate fertilization under no-tillage, with pearl millet as a cover crop, promotes the accumulation of organic carbon in soil humic fractions.


2011 ◽  
Vol 29 (3) ◽  
pp. 515-522 ◽  
Author(s):  
G Concenço ◽  
J.C Salton ◽  
M.L Secretti ◽  
P.B Mendes ◽  
R.C Brevilieri ◽  
...  

This study aims to assess the composition of weed communities as a function of distinct selection factors, at neighboring areas submitted to distinct soil management and diverse use for sixteen years. Four areas submitted to distinct managements (conventional tillage system; no-till system; integration crop/livestock and continuous livestock) were sampled in relation to the occurrence and severity of weed species by the beginning of the planting season, being estimated the relative abundance, relative frequency and relative dominance of each weed species under each area, as well as the Importance Value Index for each species. Areas were also compared by the Sørensen's similarity coefficient. Areas where pasture and grazing were never present, exhibited a number of seedlings of weed species 250% higher than areas periodically or continuously under grazing, while the area of soil covered by weeds was 87% superior at the conventional tillage system in relation to the average of the other treatments. Grass weeds were the most important at the conventional tillage area while broadleaved weeds where more important at the no-till area, probably due also to herbicide selection factors. Under crop/livestock integration there may be the need to care about controlling seedlings of the forage species inside grain crops in succession.


2017 ◽  
Vol 30 (3) ◽  
pp. 568-577
Author(s):  
VITOR MARQUES VIDAL ◽  
FREDERICO ANTONIO LOUREIRO SOARES ◽  
MARCONI BATISTA TEIXEIRA ◽  
ANTONIO EVAMI CAVALCANTE SOUSA ◽  
FERNANDO NOBRE CUNHA

ABSTRACT Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O) and two soil management systems (no-till and conventional tillage) on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201) was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.


2018 ◽  
Vol 22 (4) ◽  
pp. 1-19 ◽  
Author(s):  
Virnei Silva Moreira ◽  
Luiz Antonio Candido ◽  
Debora Regina Roberti ◽  
Geovane Webler ◽  
Marcelo Bortoluzzi Diaz ◽  
...  

Abstract The water balance in agricultural cropping systems is dependent on the physical and hydraulic characteristics of the soil and the type of farming, both of which are sensitive to the soil management. Most models that describe the interaction between the surface and the atmosphere do not efficiently represent the physical differences across different soil management areas. In this study, the authors analyzed the dynamics of the water exchange in the agricultural version of the Integrated Biosphere Simulator (IBIS) model (Agro-IBIS) in the presence of different physical soil properties because of the different long-term soil management systems. The experimental soil properties were obtained from two management systems, no tillage (NT) and conventional tillage (CT) in a long-term experiment in southern Brazil in the soybean growing season of 2009/10. To simulate NT management, this study modified the top soil layer in the model to represent the residual layer. Moreover, a mathematical adjustment to the computation of leaf area index (LAI) is suggested to obtain a better representation of the grain fill to the physiological maturity period. The water exchange dynamics simulated using Agro-IBIS were compared against experimental data collected from both tillage systems. The results show that the model well represented the water dynamics in the soil and the evapotranspiration (ET) in both management systems, in particular during the wet periods. Better results were found for the conventional tillage management system for the water balance. However, with the incorporation of a residual layer and soil properties in NT, the model improved the estimation of evapotranspiration by 6%. The ability of the Agro-IBIS model to estimate ET indicates its potential application in future climate scenarios.


2018 ◽  
Vol 71 ◽  
pp. 51-56 ◽  
Author(s):  
Trevor K. James ◽  
Katherine N. Tozer

Variegated thistle (Silybum marianum) is a large, spiny annual that often forms dense monospecific communities on dry ridges and sunny hillslopes. The owner of a typical Poverty Bay hill-country farm with persistent variegated-thistle infestations reported that winter applications of herbicide were ineffectual in the long term as more variegated thistles simply recolonised the sprayed sites. An absence of preferred species, particularly perennial ryegrass (Lolium perenne) and legumes (Lotus and Trifolium spp.), in the soil seed bank under dense thistle populations may explain the persistence of these monospecific populations. To test this hypothesis, soil samples were collected from a dense and sparse variegated-thistle population in each of seven paddocks and incubated in a glasshouse. Emerged seedlings were identified and counted. The incubation was repeated three times. Total soil seed numbers were similar under both the dense and sparse populations with similar numbers of preferred legumes under both. However, there were significantly more perennial ryegrass seeds under the dense variegated-thistle populations compared with the sparse ones. Domination of thistles in densely infested patches was not due to lack of preferred species, or indeed other weed species, in the soil seed bank.


2018 ◽  
Vol 53 (4) ◽  
pp. 435-442 ◽  
Author(s):  
Cesar Tiago Forte ◽  
Leandro Galon ◽  
Amauri Nelson Beutler ◽  
Felipe José Menin Basso ◽  
Felipe Nonemacher ◽  
...  

Abstract: The objective of this work was to evaluate the density and composition of the soil weed seed bank when bean, corn, and soybean are cultivated in the no-tillage system (NTS) in rotation with winter cover crop species and in the conventional tillage system (CTS). The experiment was installed in a complete randomized block design with three replicates. The evaluation of the seed bank was performed on soil samples (0-10 and 10-20 cm) in four points of each experimental unit, at 15, 30, 60, and 90 days of cultivation. Bean, corn, and soybean crops were sown in the NTS with different soil cover crops in rotation, as well as in the CTS. The NTS provided a more dense and abundant soil seed bank of the species Gnaphalium spicatum and Oxalis corniculata when corn, soybean, and bean were cultivated. The species Lolium multiflorum showed lower density and less seeds in the soil seed bank when the NTS was adopted. The use of the winter cover crops black oat and cow vetch, cultivated individually or in consortium, resulted in a lower density of weed species, especially of L. multiflorum. The NTS provides a lower density of weed species in the soil seed bank than the CTS.


2001 ◽  
Vol 37 (1) ◽  
pp. 37-51 ◽  
Author(s):  
E. KEBREAB ◽  
A. J. MURDOCH

A computer simulation model was developed to investigate strategies for control of the parasitic weed species of Orobanche. The model makes use of data from published literature and predicts infestation levels in a dynamic and deterministic way. It is predicted that sustainable control of the parasite can only be achieved by reducing the soil seed bank to levels of 1000–2000 seeds m−2 and maintaining it at that level in subsequent years. When cultural control methods such as hand weeding, trap/catch cropping, delayed planting, resistant cultivars and solarization were considered individually, a relatively high level of effectiveness was required to contain the soil seed bank. An integrated approach with a selection of appropriate cultural methods is therefore recommended for further testing and validation in the field. The simulations demonstrate the importance of preventing new seeds entering the soil seed bank and that although reducing the soil seed bank may not increase yield for the first few years, it will ultimately increase production.


2022 ◽  
Vol 172 ◽  
pp. 104339
Author(s):  
Eliane Cristina Gruszka Vendruscolo ◽  
Dany Mesa ◽  
Emanuel Maltempi de Souza

Sign in / Sign up

Export Citation Format

Share Document