scholarly journals The rabbit as an animal model for experimental surgery

2009 ◽  
Vol 24 (4) ◽  
pp. 325-328 ◽  
Author(s):  
Mônica Diuana Calasans-Maia ◽  
Maria Lucia Monteiro ◽  
Fábio Oliveira Áscoli ◽  
José Mauro Granjeiro

The white New Zealand rabbit (Oryctolagus cuniculus) is frequently used as a model for in vivo studies. However, information on precautions when using this animal as an experimental model is limited. This review of the literature covers the gamut from the selection of the animal model all the way to its death, and describes procedures for transporting, raising, breeding, housing, administering anesthesia and handling so as to rationalize the utilization of this species while exploiting its unique characteristics. Based upon the literature and our own experience with white New Zealand rabbits, we conclude that the rabbit is an adequate model for experimental surgery.

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


2016 ◽  
Vol 3 (2) ◽  
pp. 145 ◽  
Author(s):  
Sabuj Nath ◽  
Sujan Das ◽  
otan Kar ◽  
Khurshida Afrin ◽  
Amith Dash ◽  
...  

2008 ◽  
Vol 35 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Mimoun Nejjari ◽  
David Kryza ◽  
Gilles Poncet ◽  
Colette Roche ◽  
Nathalie Perek ◽  
...  

2012 ◽  
Vol 21 (04) ◽  
pp. 296-300
Author(s):  
K. Horas ◽  
M. Tonak ◽  
A. A. Kurth

SummaryChondrosarcoma is the second most common primary malignant bone tumour in humans. Currently, surgical resection is the only appropriate curative approach as it is relatively unresponsive to traditional chemoand radiotherapy. However, a complete resection is often hindered due to the proximity to organs resulting in a poor outcome of this challenging malignancy. Few novel antitumour agents have been tested on different chondrosarcoma cell lines in vitro so far. In order to qualify new agents in vivo, animal models are often used in which cell lines are subcutaneously injected prior to chemotherapeutical treatment. These types of models often lack relevance to the human chondrosarcoma as the number of agents that fail in the clinic far outweighs those considered effective on in vivo studies. Orthotopic xenograft models however are of much more predictive value. Thus, the development of a novel orthotopic animal model for human chondrosarcoma using a three-dimensional matrix carrying tumour cells, was the aim of this study. For that purpose, SW-1353, a human bone chondrosarcoma cell line, was first cultured in MatrigelTM, followed by orthotopic implantation into10 SCID mice by intra-tibial injection. After 40 days, the animals developed localized bone tumours verified by radiographic and histological examinations. Radiologic and histological sections showed osteolysis and invasive tumour growth. This study demonstrates a promising new method for effective and reproducible orthotopic implantation of human chondrosarcoma. The presented animal model allows further examination and can be used as a predictive preclinical model for anticancer drug activity in humans.


2020 ◽  
Vol 21 (9) ◽  
pp. 3270
Author(s):  
Ruth Maron ◽  
Gad Armony ◽  
Michael Tsoory ◽  
Meir Wilchek ◽  
Dan Frenkel ◽  
...  

The two major proteins involved in Alzheimer’s disease (AD) are the amyloid precursor protein (APP) and Tau. Here, we demonstrate that these two proteins can bind to each other. Four possible peptides APP1 (390–412), APP2 (713–730), Tau1 (19–34) and Tau2 (331–348), were predicted to be involved in this interaction, with actual binding confirmed for APP1 and Tau1. In vivo studies were performed in an Alzheimer Disease animal model—APP double transgenic (Tg) 5xFAD—as well as in 5xFAD crossed with Tau transgenic 5xFADXTau (FT), which exhibit declined cognitive reduction at four months of age. Nasal administration of APP1 and Tau1 mixture, three times a week for four or five months, reduced amyloid plaque burden as well as the level of soluble Aβ 1–42 in the brain. The treatment prevented the deterioration of cognitive functions when initiated at the age of three months, before cognitive deficiency was evident, and also at the age of six months, when such deficiencies are already observed, leading to a full regain of cognitive function.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1580 ◽  
Author(s):  
Vuanghao Lim ◽  
Edward Schneider ◽  
Hongli Wu ◽  
Iok-Hou Pang

Cataract is an eye disease with clouding of the eye lens leading to disrupted vision, which often develops slowly and causes blurriness of the eyesight. Although the restoration of the vision in people with cataract is conducted through surgery, the costs and risks remain an issue. Botanical drugs have been evaluated for their potential efficacies in reducing cataract formation decades ago and major active phytoconstituents were isolated from the plant extracts. The aim of this review is to find effective phytoconstituents in cataract treatments in vitro, ex vivo, and in vivo. A literature search was synthesized from the databases of Pubmed, Science Direct, Google Scholar, Web of Science, and Scopus using different combinations of keywords. Selection of all manuscripts were based on inclusion and exclusion criteria together with analysis of publication year, plant species, isolated phytoconstituents, and evaluated cataract activities. Scientists have focused their attention not only for anti-cataract activity in vitro, but also in ex vivo and in vivo from the review of active phytoconstituents in medicinal plants. In our present review, we identified 58 active phytoconstituents with strong anti-cataract effects at in vitro and ex vivo with lack of in vivo studies. Considering the benefits of anti-cataract activities require critical evaluation, more in vivo and clinical trials need to be conducted to increase our understanding on the possible mechanisms of action and the therapeutic effects.


Sign in / Sign up

Export Citation Format

Share Document