scholarly journals Compressive strength of esthetic restorative materials polymerized with quartz-tungsten-halogen light and blue LED

2009 ◽  
Vol 20 (1) ◽  
pp. 54-57 ◽  
Author(s):  
Cecy Martins Silva ◽  
Katia Regina Hostilio Cervantes Dias

This study compared the compressive strength of a composite resin and compomer photoactivated with a conventional quartz-tungsten halogen-light (XL 3000, 3M/SPE) and a blue light-emitting diode (LED) (SmartLite PS; Dentsply/De Trey). Forty disc-shaped specimens were prepared using a split polytetrafluoroethylene matrix (4.0 mm diameter x 8.0 mm hight) in which the materials were inserted incrementally. The curing time of each increment was of 40 s with the QTH and 10 s with the LED. The specimens were randomly assigned to 4 groups (n=10), according to the light source and the restorative material. After storage in distilled water at 37oC ± 2oC for 24 h, the specimens was tested in compressive strength in a universal testing machine with load cell of 500 kgf running at a crosshead speed of 0.5 mm/min. Data (in MPa) were analyzed statistically by ANOVA and Student-Newman-Keuls test (p<0.05). For the composite resin, light curing with the QTH source did not produce statistically significant difference (p>0.05) in the compressive strength when compared to light curing with the LED source. However, light curing of the compomer with the QTH source resulted in significantly higher compressive strength than the use of the LED unit (p>0.05). The composite resin presented significantly higher (p>0.05) compressive strength than the compomer, regardless of the light source. In conclusion, the compressive strength of the tested materials photoactivated with a QTH and a LED light source was influenced by the energy density employed and the chemical composition of the esthetic restorative materials.

2005 ◽  
Vol 19 (2) ◽  
pp. 123-126 ◽  
Author(s):  
Maria Cecília Caldas Giorgi Tolosa ◽  
Luís Alexandre Maffei Sartini Paulillo ◽  
Marcelo Giannini ◽  
Alex José Souza dos Santos ◽  
Carlos Tadeu dos Santos Dias

The aim of this study was to evaluate the diametrical tensile strength (DTS) of three light-curing photo-activated composites with two different light curing units (LCU). Three types of dental restorative composites were used in this study: micro filled A110 (3M Espe); P60 (3M Espe) for posterior restorations, and micro-hybrid Charisma (Heraeus-Kulzer). The two LCUs were: halogen light (HAL) (Degulux, Degussa) and blue light emitting diode (LED) (Ultrablue, DMC). Resin composite specimens were inserted incrementally into a Teflon split mold meas-uring 3 mm in depth and 6 mm in internal diameter, and cured using either LCU (n = 10). Specimens were placed into a dark bottle containing distilled water at 37°C for 7 days. DTS tests were performed in a Universal Testing Machine (0.5 mm/min). Data were submitted to two-way ANOVA and Tukey's test. Results were (MPa): A110/HAL: 276.50 ± 62.94ª; A110/LED: 306.01 ± 65.16ª; P60/HAL: 568.29 ± 60.77b and P60/LED: 543.01 ± 83.65b; Charisma/HAL: 430.94 ± 67.28c; Charisma/LED: 435.52 ± 105.12c. Results suggested that no significant difference in DTS was obtained with LCUs for the same composite. However, resin composite restorative materials presented different DTS.


2017 ◽  
Vol 15 (4) ◽  
pp. 258
Author(s):  
Marcelo Giannini ◽  
Andreia Assis Carvalho ◽  
Ariovaldo Stefani ◽  
Wladimir Franco de Sá Barbosa ◽  
Lawrence Gonzaga Lopes

Self-adhesive, dual-polymerizing resin cements require no treatment to the prepared tooth surfaces before cementation. Aim: The aim of this study was to evaluate the influence of curing mode on bond strength (BS) of three cementing systems to bovine dentin. Methods: The buccal enamel surfaces of 50 bovine incisors were removed to expose dentin and to flat the surface. The teeth were divided into five groups (n=10), which consisted of two resin cements (Multilink and Clearfil SA Cement) that were tested in dual- (halogen light for 40 s) and self-cured modes, and a control (RelyX ARC). Two cylinders of resin cements (1.0 mm X 0.75 mm) were prepared on each bonded dentin surface. After 24h at 37oC, resin cylinders were subjected to micro-shear testing in a universal testing machine (4411/Instron - 0.5 mm/min). Data were statistically analyzed by two-way ANOVA, Tukey and Dunnett`s test (5%). Results: Multilink showed higher BS than those observed on Clearfil SA. Light-curing resulted in higher BS for both Multilink and Clearfil SA. When Multilink was light-cured, no significant difference on BS was demonstrated between it and RelyX ARC. Conclusions: The highest BS values were obtained in control group and light-cured Multilink resin cement.


Author(s):  
Anuradha Vitthal Wankhade ◽  
Sharad Basavraj Kamat ◽  
Santosh Irappa Hugar ◽  
Girish Shankar Nanjannawar ◽  
Sumit Balasaheb Vhate

Introduction: New generation composite resin materials have revolutionized the art of aesthetic dentistry. The clinical success is dependent on effective polymerisation and surface hardness which in turn are dependent on the performance of Light Curing Units (LCU). This study utilises surface hardness as a measure of degree of polymerisation of composite resins achieved by LCUs. Aim: To evaluate the difference in surface hardness of nanohybrid and microhybrid resin composites cured by light curing systems, Light Emitting Diode (LED) and Quartz Tungsten Halogen (QTH). Materials and Methods: In this invitro experimental study, two types of hybrid composites (Nanohybrid and Microhybrid) were tested for surface hardness by using two different light curing systems (LED and QTH). All the Nanohybrid and Microhybrid specimens were cured using LED and QTH LCUs, thus giving four combinations. A total of 60 specimens (6 mm diameter and 2 mm depth) were prepared using Teflon mould with 15 samples for each combination. Surface hardness was measured on upper and lower surface after 24 hours and hardness ratio was calculated. Data was analysed using independent t-test for intergroup comparison. Level of significance was kept at 5%. Results: Surface hardness of resin composites cured by LED LCU was greater than those cured by QTH LCU. Additionally, the hardness value was greater for the upper surface. Nanohybrids showed better surface hardness than Microhybrids for both the LCUs. Conclusion: Nanohybrid composite resins and LED system were found to be more effective in terms of surface hardness as compared to their counterparts.


2020 ◽  
Vol 45 (1) ◽  
pp. 104-110 ◽  
Author(s):  
D Fuhrmann ◽  
D Murchison ◽  
S Whipple ◽  
K Vandewalle

SUMMARY Objectives: The purpose of this study was to evaluate the properties (fracture toughness, surface hardness) of newer conventional glass-ionomer restorative materials that are marketed for posterior stress-bearing areas compared with more traditional glass-ionomer restorative materials marketed for non–load-bearing areas and composite-resin restorative materials. Methods and Materials: Notched-beam fracture toughness specimens were created in a mold with each tested material (Equia Forte, GC America, with and without a surface coating of Equia Forte Coat; Ketac Universal, 3M/ESPE; ChemFil Rock, Dentsply; Fuji IX GP Extra, GC; Ionostar Molar, VOCO; Filtek Z250, 3M/ESPE; Filtek Supreme Ultra, 3M/ESPE) and fractured using a universal testing machine after 24 hours of storage. Hardness values were determined on the surface of the fracture toughness specimens using a hardness tester. Data were analyzed with a one-way ANOVA and Tukey's post hoc test per property (alpha=0.05). Results: The composite-resin restorative materials had significantly greater fracture toughness than the glass-ionomer materials. There was no significant difference in fracture toughness between the glass-ionomer materials. The use of a resin coating significantly increased the surface hardness of the newer glass ionomer marketed for stress-bearing areas. Conclusions: Fracture toughness was not improved with the newer glass-ionomer restorative materials marketed for stress-bearing areas compared to the conventional glass-ionomer materials, however a resin coating provided greater surface hardness.


2010 ◽  
Vol 21 (5) ◽  
pp. 432-438 ◽  
Author(s):  
Francine do Couto Lima Moreira ◽  
Nelson Roberto Antoniosi Filho ◽  
João Batista de Souza ◽  
Lawrence Gonzaga Lopes

The aim of this study was to assess polymerization ability of three light-curing units by evaluating the influence of the light source, curing regimen and permeant (water or ethanol) on sorption, solubility and amount of residual monomers of a dental adhesive. Specimens of Adper Single Bond 2 were fabricated using a stainless steel circular matrix (8 mm x 1 mm). One quartz-tungsten-halogen (QTH) lamp and two light-emitting diode (LED) device at three different curing regimes (L1 = 12 J; L2 = 24 J; L3 = 24 J) were used to cure the specimens. Specimens were stored in two types of permeants - deionized water or 75% ethanol - for two storage times (G1 =7 days; G2 = 30 days). The specimens underwent water sorption and solubility tests, according to ISO 4049:2000 standard. After storage, residual monomers were identified and quantified by high performance liquid chromatography (HPLC). For sorption, L1 showed the highest values and QTH, the lowest. For solubility, in ethanol-stored groups, L1 had also the highest values, and QTH, the lowest, and findings were significantly different from the other curing regimens. L1 leached significantly more monomers than the others, and QTH had the lowest results. In conclusion, the type of light source, the curing regimen and the permeant affected sorption, solubility and amount of residual monomers of the adhesive under study.


2017 ◽  
Vol 16 ◽  
pp. 1-7
Author(s):  
Bruna Genari ◽  
Vicente Castelo Branco Leitune ◽  
João Henrique Macedo Saucedo ◽  
Susana Maria Werner Samuel ◽  
Fabrício Mezzomo Collares

Self-adhesive, dual-polymerizing resin cements require no treatment to the prepared tooth surfaces before cementation. Aim: The aim of this study was to evaluate the influence of curing mode on bond strength (BS) of three cementing systems to bovine dentin. Methods: The buccal enamel surfaces of 50 bovine incisors were removed to expose dentin and to flat the surface. The teeth were divided into five groups (n=10), which consisted of two resin cements (Multilink and Clearfil SA Cement) that were tested in dual- (halogen light for 40 s) and self-cured modes, and a control (RelyX ARC). Two cylinders of resin cements (1.0 mm X 0.75 mm) were prepared on each bonded dentin surface. After 24h at 37oC, resin cylinders were subjected to micro-shear testing in a universal testing machine (4411/Instron - 0.5 mm/min). Data were statistically analyzed by two-way ANOVA, Tukey and Dunnett`s test (5%). Results: Multilink showed higher BS than those observed on Clearfil SA. Light-curing resulted in higher BS for both Multilink and Clearfil SA. When Multilink was light-cured, no significant difference on BS was demonstrated between it and RelyX ARC. Conclusions: The highest BS values were obtained in control group and light-cured Multilink resin cement.


2018 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Dr. Sazan Sherdil Saleem

The present study was aimed to evaluate and compare the compressive strength ofconventional glass ionomer cement with resin modified glass ionomer, compomer andmicrohybrid composite. A total of 40 specimens of esthetic restorative materials werefabricated using customized cylindrical teflon mould measuring 6mm height and 4mmdiameter and were grouped with ten specimens in each group, Group I: Conventionalglass ionomer cement (Fuji II). Group II: Resin modified glass ionomer (Fuji II LC).Group III: Compomer (Dyract AP) and Group IV: Microhybrid composite resin(Tetric Ceram).They were covered with Mylar strip and were cured using LED lightcuring unit. Compressive strength was evaluated using Universal testing machine. Theresult showed that there were a significant difference among the groups in whichTetric Ceram showed highest compressive strength and Fuji II showed the leastcompressive strength


2008 ◽  
Vol 02 (01) ◽  
pp. 37-42 ◽  
Author(s):  
A. Rıza Alpöz ◽  
Fahinur Ertuḡrul ◽  
Dilsah Cogulu ◽  
Aslı Topaloḡlu Ak ◽  
Metin Tanoḡlu ◽  
...  

ABSTRACTObjectives: The aim of this study was to investigate microhardness and compressive strength of composite resin (Tetric-Ceram, Ivoclar Vivadent), compomer (Compoglass, Ivoclar, Vivadent), and resin modified glass ionomer cement (Fuji II LC, GC Corp) polymerized using halogen light (Optilux 501, Demetron, Kerr) and LED (Bluephase C5, Ivoclar Vivadent) for different curing times.Methods: Samples were placed in disc shaped plastic molds with uniform size of 5 mm diameter and 2 mm in thickness for surface microhardness test and placed in a diameter of 4 mm and a length of 2 mm teflon cylinders for compressive strength test. For each subgroup, 20 samples for microhardness (n=180) and 5 samples for compressive strength were prepared (n=45). In group 1, samples were polymerized using halogen light source for 40 seconds; in group 2 and 3 samples were polymerized using LED light source for 20 seconds and 40 seconds respectively. All data were analyzed by two way analysis of ANOVA and Tukey’s post-hoc tests.Results: Same exposure time of 40 seconds with a low intensity LED was found similar or more efficient than a high intensity halogen light unit (P>.05), however application of LED for 20 seconds was found less efficient than 40 seconds curing time (P=.03).Conclusions: It is important to increase the light curing time and use appropriate light curing devices to polymerize resin composite in deep cavities to maximize the hardness and compressive strength of restorative materials. (Eur J Dent 2008;2:37-42)


2018 ◽  
Vol 6 (02/03) ◽  
pp. 060-064
Author(s):  
R. Bansal ◽  
M. Bansal ◽  
S. Walia ◽  
C. Gupta ◽  
L. Bansal ◽  
...  

Abstract Objective To assess the adequacy of various light-curing units to polymerize the posterior composite resin. Materials and Methods Specimens were prepared by placing a single increment of posterior composite resin in split cylindrical metallic mold of dimension (6.0 mm in diameter and 5 mm in depth). Polymerization was done by utilizing one quartz-tungsten-halogen and three light-emitting diode light-curing units of different powers. The specimens of composite resin were then mounted on metallic molds utilizing autopolymerizing acrylic resin. After polishing, the complete setting of composite resin material was analyzed using Vickers hardness test. Results Showed in each group, hardness reduced as we moved from upper to lower surface of composite resin. Furthermore, hardness increased as intensity of light was increased. The maximum hardness was detected when light-emitting diode light-curing unit having intensity of 1,250 mW/cm2 was utilized and least hardness was detected when halogen lamp having intensity 418 mW/cm2 was utilized and results were found to be highly significant (p < 0.01). Conclusion It was concluded that increased top and bottom hardness can be accomplished by utilizing the light-curing unit of high intensity.


Sign in / Sign up

Export Citation Format

Share Document