scholarly journals Seasonality of nutrients in leaves and fruits of apple trees

2006 ◽  
Vol 63 (5) ◽  
pp. 493-501 ◽  
Author(s):  
Gilmar Ribeiro Nachtigall ◽  
Antonio Roque Dechen

The nutrient accumulation curves of apple trees are good indicators of plant nutrient demand for each developmental stage. They are also a useful tool to evaluate orchard nutritional status and to estimate the amount of soil nutrient removal. This research aimed at evaluating the seasonality of nutrients in commercial apple orchards during the agricultural years of 1999, 2000, and 2001. Therefore, apple tree leaves and fruits of three cultivars 'Gala', 'Golden Delicious' and 'Fuji' were weekly collected and evaluated for fresh and dry matter, fruit diameter and macronutrient (N, P, K, Ca and Mg) and micronutrient (B, Cu, Fe, Mn, and Zn) concentrations. Leaf and fruit sampling started one or two weeks after full bloom, depending on the cultivar, and ended at fruit harvest or four weeks later (in the case of leaf sampling). In general, leaf concentrations of N, P, K, Cu, and B decreased; Ca increased; and Mg, Fe, Mn, and Zn did vary significantly along the plant vegetative cycle. In fruits, the initial nutrient concentrations decreased quickly, undergoing slow and continuous decreases and then remaining almost constant until the end of fruit maturation, indicating nutrient dilution, once the total nutrient accumulation increased gradually with fruit growth. Potassium was the nutrient present in highest quantities in apple tree fruits and thus, the most removed from the soil.

2013 ◽  
Vol 23 (3) ◽  
pp. 312-318 ◽  
Author(s):  
Thomas G. Bottoms ◽  
Mark P. Bolda ◽  
Mark L. Gaskell ◽  
Timothy K. Hartz

Diagnosis and recommendation integrated system (DRIS) leaf blade and petiole optimum nutrient ranges were developed through tissue sampling in 53 commercial strawberry (Fragaria ×ananassa) fields in the coastal valleys of central California in 2010 and 2011. All fields were in an annual production system using the day-neutral cultivar Albion. Leaf blades and petioles were sampled five times from early flowering through the fruit harvest period. Data on soil nutrient availability and grower fertilization practices were also collected. DRIS analysis was used to develop nutrient optimum ranges based on nutrient concentrations observed in nutritionally balanced, high-yield fields. Blade nitrogen (N), phosphorus (P), and potassium (K) concentrations declined from the vegetative stage until the main harvest period, and stabilized thereafter. Blade calcium (Ca), boron (B), and iron (Fe) increased over time while magnesium (Mg), sulfur (S), manganese (Mn), zinc (Zn), and copper (Cu) decreased. The blade N optimum range was lower than previously published sufficiency ranges during the fruit harvest period, and the Zn optimum range was lower throughout the season. Other nutrients were in general agreement with previously established sufficiency ranges with the exception of Ca, Mn, and Fe, which were higher. Petiole nitrate-nitrogen (NO3-N) was highly variable among high-yield fields, was not correlated with soil NO3-N at any growth stage, and was therefore of limited value as an indicator of crop N status. Comparison of soil nutrient availability with grower fertilization practices suggested that significant improvement in fertilizer management was possible.


2019 ◽  
Vol 86 (4) ◽  
pp. 765-770 ◽  
Author(s):  
X.-Y. Li ◽  
P.-P. Fan ◽  
Y. Liu ◽  
G.-L. Hou ◽  
Q. Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Takahashi ◽  
Kaori Shiojiri ◽  
Akira Yamawo

AbstractAboveground communication between plants is well known to change defense traits in leaves, but its effects on belowground plant traits and soil characteristics have not been elucidated. We hypothesized that aboveground plant-to-plant communication reduces root nodule symbiosis via induction of bactericidal chemical defense substances and changes the soil nutrient environment. Soybean plants were exposed to the volatile organic compounds (VOCs) from damaged shoots of Solidago canadensis var. scabra, and leaf defense traits (total phenolics, saponins), root saponins, and root nodule symbiosis traits (number and biomass of root nodules) were measured. Soil C/N ratios and mineral concentrations were also measured to estimate the effects of resource uptake by the plants. We found that total phenolics were not affected. However, plants that received VOCs had higher saponin concentrations in both leaves and roots, and fewer root nodules than untreated plants. Although the concentrations of soil minerals did not differ between treatments, soil C/N ratio was significantly higher in the soil of communicated plants. Thus, the aboveground plant-to-plant communication led to reductions in root nodule symbiosis and soil nutrient concentrations. Our results suggest that there are broader effects of induced chemical defenses in aboveground plant organs upon belowground microbial interactions and soil nutrients, and emphasize that plant response based on plant-to-plant communications are a bridge between above- and below-ground ecosystems.


2001 ◽  
Vol 36 (3) ◽  
pp. 225-241 ◽  
Author(s):  
Vladimir G. Onipchenko ◽  
Mikhail I. Makarov ◽  
Eddy van der Maarel

2021 ◽  
Author(s):  
Mengjiao Sun ◽  
Enqing Hou ◽  
Jiasen Wu ◽  
Jianqin Huang ◽  
Xingzhao Huang

Abstract Background: Soil nutrients play critical roles in regulating and improving the sustainable development of economic forests. Consequently, an elucidation of the spatial patterns and drivers of soil nutrients in these forests is fundamental to their management. For this study, we collected 314 composite soils at a 0-30 cm depth from a typical hickory plantation in Lin 'an, Zhejiang Province, China. We determined the concentrations of macronutrients (i.e., soil organic carbon, hydrolyzed nitrogen, available phosphorus, and available potassium) and micronutrients (i.e., iron, manganese, zinc, and copper.) of the soils. We employed random forest analysis to quantify the relative importance of soil-forming factors to predict the soil nutrient concentrations, which could then be extrapolated to the entire hickory region. Results: Random forest models explained 61%–88% of the variations in soil nutrient concentrations. The mean annual temperature and mean annual precipitation were the most important predictor of soil macronutrient and micronutrient concentrations. Moreover, parent material was another key predictor of soil available phosphorus and micronutrient concentrations. Mapping results demonstrated the importance of climate in controlling the spatial distribution of soil nutrient concentrations at finer scales, as well as the effect of parent material, topography, stand structure, and management measures of hickory plantations. Conclusions: Our study highlights the biotic factors, abiotic factors, and management factors control over soil macronutrient and micronutrient concentrations, which have significant implications for the sustainability of soil nutrients in forest plantations.


1991 ◽  
Vol 71 (4) ◽  
pp. 545-549
Author(s):  
G. H. Neilsen ◽  
E. J. Hogue ◽  
P. B. Hoyt

Nine years after liming a sandy loam orchard soil to pH 6.0 with calcium hydroxide or dolomitic lime, pH and extractable Ca and Mg were still higher where limed than where unlimed. However, pH had decreased below 5.0 in the limed and N-fertilized plots. Delicious (Malus domestica Borkh.) apple tree nutrition benefited from the two soil amendments. Leaf Mg was increased by dolomite. Leaf Ca was increased by calcium hydroxide. Leaf Mn, although highest in unlimed soils, increased over time for both limed and unlimed soil. Key words: Apple, lime application, reacidification


2010 ◽  
Vol 94 (1-3) ◽  
pp. 17-24 ◽  
Author(s):  
B.A. McGregor ◽  
A.J. Brown

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1666
Author(s):  
Silvana Pietrosemoli ◽  
Charles Raczkowski ◽  
James T. Green ◽  
Maria Jesús Villamide

This study compares four stocking rates (37, 74, 111 and 148 pigs ha−1) for growing to finishing pigs (18.4 ± 0.5 kg and 118.5 ± 2.0 kg and 35.7 ± 2.1 kg and 125.7 ± 2.3 kg initial and final BW for grazing periods 1 and 2, respectively) and their effect on ground cover and soil traits in bermudagrass (Cynodon dactylon [L.] Pers) pastures, over two 14-week grazing periods (July–September and May–August). The study was conducted at the Center for Environmental Farming systems at the Cherry Research Station, Goldsboro North Carolina. A continuous stocking method was implemented to manage the pasture. The percent ground cover was estimated with a modified step point technique. Soil samples were collected in three sampling positions (center, inner and outer areas of the paddocks) and two soil sampling depths (0–30 and 30–90 cm). The experimental design was a completely randomized block with three field replicates. Data were analyzed using the PROC GLIMMIX procedure of SAS/STAT ® Version 9.4. Greater ground cover and lesser soil nutrient concentrations were registered in bermudagrass paddocks managed with 37 pigs ha−1. The results of this study also validated the existence of a spatial pattern of soil properties, which differed among sampling positions and depths.


Sign in / Sign up

Export Citation Format

Share Document